File size: 4,663 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os

import pandas as pd

from aif360.datasets import StandardDataset


default_mappings = {
    'label_maps': [{1.0: 'Good Credit', 2.0: 'Bad Credit'}],
    'protected_attribute_maps': [{1.0: 'Male', 0.0: 'Female'},
                                 {1.0: 'Old', 0.0: 'Young'}],
}

def default_preprocessing(df):
    """Adds a derived sex attribute based on personal_status."""
    # TODO: ignores the value of privileged_classes for 'sex'
    status_map = {'A91': 'male', 'A93': 'male', 'A94': 'male',
                  'A92': 'female', 'A95': 'female'}
    df['sex'] = df['personal_status'].replace(status_map)

    return df

class GermanDataset(StandardDataset):
    """German credit Dataset.

    See :file:`aif360/data/raw/german/README.md`.
    """

    def __init__(self, label_name='credit', favorable_classes=[1],
                 protected_attribute_names=['sex', 'age'],
                 privileged_classes=[['male'], lambda x: x > 25],
                 instance_weights_name=None,
                 categorical_features=['status', 'credit_history', 'purpose',
                     'savings', 'employment', 'other_debtors', 'property',
                     'installment_plans', 'housing', 'skill_level', 'telephone',
                     'foreign_worker'],
                 features_to_keep=[], features_to_drop=['personal_status'],
                 na_values=[], custom_preprocessing=default_preprocessing,
                 metadata=default_mappings):
        """See :obj:`StandardDataset` for a description of the arguments.

        By default, this code converts the 'age' attribute to a binary value
        where privileged is `age > 25` and unprivileged is `age <= 25` as
        proposed by Kamiran and Calders [1]_.

        References:
            .. [1] F. Kamiran and T. Calders, "Classifying without
               discriminating," 2nd International Conference on Computer,
               Control and Communication, 2009.

        Examples:
            In some cases, it may be useful to keep track of a mapping from
            `float -> str` for protected attributes and/or labels. If our use
            case differs from the default, we can modify the mapping stored in
            `metadata`:

            >>> label_map = {1.0: 'Good Credit', 0.0: 'Bad Credit'}
            >>> protected_attribute_maps = [{1.0: 'Male', 0.0: 'Female'}]
            >>> gd = GermanDataset(protected_attribute_names=['sex'],
            ... privileged_classes=[['male']], metadata={'label_map': label_map,
            ... 'protected_attribute_maps': protected_attribute_maps})

            Now this information will stay attached to the dataset and can be
            used for more descriptive visualizations.
        """

        filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                '..', 'data', 'raw', 'german', 'german.data')
        # as given by german.doc
        column_names = ['status', 'month', 'credit_history',
            'purpose', 'credit_amount', 'savings', 'employment',
            'investment_as_income_percentage', 'personal_status',
            'other_debtors', 'residence_since', 'property', 'age',
            'installment_plans', 'housing', 'number_of_credits',
            'skill_level', 'people_liable_for', 'telephone',
            'foreign_worker', 'credit']
        try:
            df = pd.read_csv(filepath, sep=' ', header=None, names=column_names,
                             na_values=na_values)
        except IOError as err:
            print("IOError: {}".format(err))
            print("To use this class, please download the following files:")
            print("\n\thttps://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data")
            print("\thttps://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.doc")
            print("\nand place them, as-is, in the folder:")
            print("\n\t{}\n".format(os.path.abspath(os.path.join(
                os.path.abspath(__file__), '..', '..', 'data', 'raw', 'german'))))
            import sys
            sys.exit(1)

        super(GermanDataset, self).__init__(df=df, label_name=label_name,
            favorable_classes=favorable_classes,
            protected_attribute_names=protected_attribute_names,
            privileged_classes=privileged_classes,
            instance_weights_name=instance_weights_name,
            categorical_features=categorical_features,
            features_to_keep=features_to_keep,
            features_to_drop=features_to_drop, na_values=na_values,
            custom_preprocessing=custom_preprocessing, metadata=metadata)