Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import OwlViTProcessor, OwlViTForObjectDetection | |
from PIL import Image, ImageDraw | |
import cv2 | |
import torch.nn.functional as F | |
import tempfile | |
import matplotlib.pyplot as plt | |
import matplotlib.cm as cm | |
from io import BytesIO | |
from SuperGluePretrainedNetwork.models.matching import Matching | |
from SuperGluePretrainedNetwork.models.utils import read_image | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load models | |
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device) | |
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") | |
matching = Matching({ | |
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024}, | |
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2} | |
}).eval().to(device) | |
# Utility functions | |
def save_array_to_temp_image(arr): | |
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB) | |
img = Image.fromarray(rgb_arr) | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') | |
temp_file_name = temp_file.name | |
temp_file.close() | |
img.save(temp_file_name) | |
return temp_file_name | |
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]): | |
height = min(image0.shape[0], image1.shape[0]) | |
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height)) | |
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height)) | |
plt.figure(figsize=(15, 15)) | |
plt.subplot(1, 2, 1) | |
plt.imshow(image0_resized) | |
plt.scatter(kpts0[:, 0], kpts0[:, 1], color='r', s=1) | |
plt.axis('off') | |
plt.subplot(1, 2, 2) | |
plt.imshow(image1_resized) | |
plt.scatter(kpts1[:, 0], kpts1[:, 1], color='r', s=1) | |
plt.axis('off') | |
fig, ax = plt.subplots(figsize=(20, 20)) | |
plt.plot([mkpts0[:, 0], mkpts1[:, 0] + image0_resized.shape[1]], [mkpts0[:, 1], mkpts1[:, 1]], 'r', lw=0.5) | |
plt.scatter(mkpts0[:, 0], mkpts0[:, 1], s=2, marker='o', color='b') | |
plt.scatter(mkpts1[:, 0] + image0_resized.shape[1], mkpts1[:, 1], s=2, marker='o', color='g') | |
plt.imshow(np.hstack([image0_resized, image1_resized]), aspect='auto') | |
plt.suptitle('\n'.join(text), fontsize=20, fontweight='bold') | |
plt.tight_layout() | |
plt.show() | |
buf = BytesIO() | |
plt.savefig(buf, format='png') | |
buf.seek(0) | |
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8) | |
buf.close() | |
img = cv2.imdecode(img_arr, 1) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
plt.close(fig) | |
return img | |
def stitch_images(images): | |
"""Stitches a list of images vertically.""" | |
if not images: | |
return Image.new('RGB', (100, 100), color='gray') | |
max_width = max([img.width for img in images]) | |
total_height = sum(img.height for img in images) | |
composite = Image.new('RGB', (max_width, total_height)) | |
y_offset = 0 | |
for img in images: | |
composite.paste(img, (0, y_offset)) | |
y_offset += img.height | |
return composite | |
# Main functions | |
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3): | |
target_sizes = torch.Tensor([target_image.size[::-1]]) | |
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.image_guided_detection(**inputs) | |
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB) | |
outputs.logits = outputs.logits.cpu() | |
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu() | |
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes) | |
boxes, scores = results[0]["boxes"], results[0]["scores"] | |
if len(boxes) == 0: | |
return [], None | |
filtered_boxes = [] | |
for box in boxes: | |
x1, y1, x2, y2 = [int(i) for i in box.tolist()] | |
cropped_img = img[y1:y2, x1:x2] | |
if cropped_img.size != 0: | |
filtered_boxes.append(cropped_img) | |
draw = ImageDraw.Draw(target_image) | |
for box in boxes: | |
draw.rectangle(box.tolist(), outline="red", width=3) | |
return filtered_boxes, target_image | |
def image_matching_no_pyramid(query_img, target_img, visualize=True): | |
temp_query = save_array_to_temp_image(np.array(query_img)) | |
temp_target = save_array_to_temp_image(np.array(target_img)) | |
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True) | |
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True) | |
if image0 is None or image1 is None: | |
return None | |
pred = matching({'image0': inp0, 'image1': inp1}) | |
pred = {k: v[0] for k, v in pred.items()} | |
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1'] | |
matches, conf = pred['matches0'], pred['matching_scores0'] | |
valid = matches > -1 | |
mkpts0 = kpts0[valid] | |
mkpts1 = kpts1[matches[valid]] | |
mconf = conf[valid] | |
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)] | |
valid_count = np.sum(valid.tolist()) | |
mkpts0_np = mkpts0.cpu().numpy() | |
mkpts1_np = mkpts1.cpu().numpy() | |
try: | |
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0) | |
except: | |
inliers = 0 | |
num_inliers = np.sum(inliers) | |
if visualize: | |
visualized_img = unified_matching_plot2( | |
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', []) | |
else: | |
visualized_img = None | |
return { | |
'valid': [valid_count], | |
'inliers': [num_inliers], | |
'visualized_image': [visualized_img] | |
} | |
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]): | |
images_to_return = [] | |
cropped_images, bbox_image = detect_and_crop(target_image, query_image) | |
temp_files = [save_array_to_temp_image(i) for i in cropped_images] | |
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files] | |
cropped_visuals = [] | |
cropped_inliers = [] | |
for result in crop_results: | |
if result: | |
for img in result['visualized_image']: | |
cropped_visuals.append(Image.fromarray(img)) | |
for inliers_ in result['inliers']: | |
cropped_inliers.append(inliers_) | |
images_to_return.append(stitch_images(cropped_visuals)) | |
is_present = any(value >= threshold for value in cropped_inliers) | |
return { | |
'is_present': is_present, | |
'image_with_boxes': bbox_image, | |
'object_detection_inliers': [int(i) for i in cropped_inliers], | |
} | |
def interface(poster_source, media_source, threshold, scale_factor): | |
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor) | |
if result1['is_present']: | |
return result1['is_present'], result1['image_with_boxes'] | |
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor) | |
return result2['is_present'], result2['image_with_boxes'] | |
iface = gr.Interface( | |
fn=interface, | |
inputs=[ | |
gr.Image(type="pil", label="Upload a Query Image (Poster)"), | |
gr.Image(type="pil", label="Upload a Target Image (Media)"), | |
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"), | |
gr.CheckboxGroup(choices=["0.33", "0.66", "1.0"], value=["0.33", "0.66", "1.0"], label="Scale Factors"), | |
], | |
outputs=[ | |
gr.Label(label="Object Presence"), | |
gr.Image(type="pil", label="Detected Bounding Boxes"), | |
], | |
title="Object Detection in Images", | |
description=""" | |
This application allows you to check if an object in a query image (poster) is present in a target image (media). | |
Steps: | |
1. Upload a Query Image (Poster) | |
2. Upload a Target Image (Media) | |
3. Set Threshold | |
4. Set Scale Factors | |
5. View Results | |
""" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |