Spaces:
Sleeping
Sleeping
File size: 8,133 Bytes
b3e7ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
import torch
import numpy as np
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from PIL import Image, ImageDraw
import cv2
import torch.nn.functional as F
import tempfile
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from io import BytesIO
from SuperGluePretrainedNetwork.models.matching import Matching
from SuperGluePretrainedNetwork.models.utils import read_image
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
matching = Matching({
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2}
}).eval().to(device)
# Utility functions
def save_array_to_temp_image(arr):
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_arr)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
temp_file_name = temp_file.name
temp_file.close()
img.save(temp_file_name)
return temp_file_name
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
height = min(image0.shape[0], image1.shape[0])
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.imshow(image0_resized)
plt.scatter(kpts0[:, 0], kpts0[:, 1], color='r', s=1)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(image1_resized)
plt.scatter(kpts1[:, 0], kpts1[:, 1], color='r', s=1)
plt.axis('off')
fig, ax = plt.subplots(figsize=(20, 20))
plt.plot([mkpts0[:, 0], mkpts1[:, 0] + image0_resized.shape[1]], [mkpts0[:, 1], mkpts1[:, 1]], 'r', lw=0.5)
plt.scatter(mkpts0[:, 0], mkpts0[:, 1], s=2, marker='o', color='b')
plt.scatter(mkpts1[:, 0] + image0_resized.shape[1], mkpts1[:, 1], s=2, marker='o', color='g')
plt.imshow(np.hstack([image0_resized, image1_resized]), aspect='auto')
plt.suptitle('\n'.join(text), fontsize=20, fontweight='bold')
plt.tight_layout()
plt.show()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.close(fig)
return img
def stitch_images(images):
"""Stitches a list of images vertically."""
if not images:
return Image.new('RGB', (100, 100), color='gray')
max_width = max([img.width for img in images])
total_height = sum(img.height for img in images)
composite = Image.new('RGB', (max_width, total_height))
y_offset = 0
for img in images:
composite.paste(img, (0, y_offset))
y_offset += img.height
return composite
# Main functions
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3):
target_sizes = torch.Tensor([target_image.size[::-1]])
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB)
outputs.logits = outputs.logits.cpu()
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
boxes, scores = results[0]["boxes"], results[0]["scores"]
if len(boxes) == 0:
return [], None
filtered_boxes = []
for box in boxes:
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
cropped_img = img[y1:y2, x1:x2]
if cropped_img.size != 0:
filtered_boxes.append(cropped_img)
draw = ImageDraw.Draw(target_image)
for box in boxes:
draw.rectangle(box.tolist(), outline="red", width=3)
return filtered_boxes, target_image
def image_matching_no_pyramid(query_img, target_img, visualize=True):
temp_query = save_array_to_temp_image(np.array(query_img))
temp_target = save_array_to_temp_image(np.array(target_img))
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True)
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True)
if image0 is None or image1 is None:
return None
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0] for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)]
valid_count = np.sum(valid.tolist())
mkpts0_np = mkpts0.cpu().numpy()
mkpts1_np = mkpts1.cpu().numpy()
try:
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
except:
inliers = 0
num_inliers = np.sum(inliers)
if visualize:
visualized_img = unified_matching_plot2(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', [])
else:
visualized_img = None
return {
'valid': [valid_count],
'inliers': [num_inliers],
'visualized_image': [visualized_img]
}
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]):
images_to_return = []
cropped_images, bbox_image = detect_and_crop(target_image, query_image)
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files]
cropped_visuals = []
cropped_inliers = []
for result in crop_results:
if result:
for img in result['visualized_image']:
cropped_visuals.append(Image.fromarray(img))
for inliers_ in result['inliers']:
cropped_inliers.append(inliers_)
images_to_return.append(stitch_images(cropped_visuals))
is_present = any(value >= threshold for value in cropped_inliers)
return {
'is_present': is_present,
'image_with_boxes': bbox_image,
'object_detection_inliers': [int(i) for i in cropped_inliers],
}
def interface(poster_source, media_source, threshold, scale_factor):
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
if result1['is_present']:
return result1['is_present'], result1['image_with_boxes']
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
return result2['is_present'], result2['image_with_boxes']
iface = gr.Interface(
fn=interface,
inputs=[
gr.Image(type="pil", label="Upload a Query Image (Poster)"),
gr.Image(type="pil", label="Upload a Target Image (Media)"),
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"),
gr.CheckboxGroup(choices=["0.33", "0.66", "1.0"], value=["0.33", "0.66", "1.0"], label="Scale Factors"),
],
outputs=[
gr.Label(label="Object Presence"),
gr.Image(type="pil", label="Detected Bounding Boxes"),
],
title="Object Detection in Images",
description="""
This application allows you to check if an object in a query image (poster) is present in a target image (media).
Steps:
1. Upload a Query Image (Poster)
2. Upload a Target Image (Media)
3. Set Threshold
4. Set Scale Factors
5. View Results
"""
)
if __name__ == "__main__":
iface.launch()
|