Spaces:
Build error
Build error
Upload 4 files
Browse files- README.md +4 -3
- app.py +225 -0
- gitattributes +49 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: ⚡
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Specific Object Recognition In The Wild
|
| 3 |
emoji: ⚡
|
| 4 |
+
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: openrail
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
| 5 |
+
from PIL import Image, ImageDraw
|
| 6 |
+
import cv2
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import tempfile
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import matplotlib.cm as cm
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
from SuperGluePretrainedNetwork.models.matching import Matching
|
| 13 |
+
from SuperGluePretrainedNetwork.models.utils import read_image
|
| 14 |
+
|
| 15 |
+
# Set device
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
# Load models
|
| 19 |
+
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
|
| 20 |
+
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
| 21 |
+
|
| 22 |
+
matching = Matching({
|
| 23 |
+
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
|
| 24 |
+
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2}
|
| 25 |
+
}).eval().to(device)
|
| 26 |
+
|
| 27 |
+
# Utility functions
|
| 28 |
+
def save_array_to_temp_image(arr):
|
| 29 |
+
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
|
| 30 |
+
img = Image.fromarray(rgb_arr)
|
| 31 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
| 32 |
+
temp_file_name = temp_file.name
|
| 33 |
+
temp_file.close()
|
| 34 |
+
img.save(temp_file_name)
|
| 35 |
+
return temp_file_name
|
| 36 |
+
|
| 37 |
+
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
|
| 38 |
+
height = min(image0.shape[0], image1.shape[0])
|
| 39 |
+
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
|
| 40 |
+
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
|
| 41 |
+
|
| 42 |
+
plt.figure(figsize=(15, 15))
|
| 43 |
+
plt.subplot(1, 2, 1)
|
| 44 |
+
plt.imshow(image0_resized)
|
| 45 |
+
plt.scatter(kpts0[:, 0], kpts0[:, 1], color='r', s=1)
|
| 46 |
+
plt.axis('off')
|
| 47 |
+
|
| 48 |
+
plt.subplot(1, 2, 2)
|
| 49 |
+
plt.imshow(image1_resized)
|
| 50 |
+
plt.scatter(kpts1[:, 0], kpts1[:, 1], color='r', s=1)
|
| 51 |
+
plt.axis('off')
|
| 52 |
+
|
| 53 |
+
fig, ax = plt.subplots(figsize=(20, 20))
|
| 54 |
+
plt.plot([mkpts0[:, 0], mkpts1[:, 0] + image0_resized.shape[1]], [mkpts0[:, 1], mkpts1[:, 1]], 'r', lw=0.5)
|
| 55 |
+
plt.scatter(mkpts0[:, 0], mkpts0[:, 1], s=2, marker='o', color='b')
|
| 56 |
+
plt.scatter(mkpts1[:, 0] + image0_resized.shape[1], mkpts1[:, 1], s=2, marker='o', color='g')
|
| 57 |
+
plt.imshow(np.hstack([image0_resized, image1_resized]), aspect='auto')
|
| 58 |
+
|
| 59 |
+
plt.suptitle('\n'.join(text), fontsize=20, fontweight='bold')
|
| 60 |
+
plt.tight_layout()
|
| 61 |
+
plt.show()
|
| 62 |
+
|
| 63 |
+
buf = BytesIO()
|
| 64 |
+
plt.savefig(buf, format='png')
|
| 65 |
+
buf.seek(0)
|
| 66 |
+
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
|
| 67 |
+
buf.close()
|
| 68 |
+
img = cv2.imdecode(img_arr, 1)
|
| 69 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 70 |
+
plt.close(fig)
|
| 71 |
+
|
| 72 |
+
return img
|
| 73 |
+
|
| 74 |
+
def stitch_images(images):
|
| 75 |
+
"""Stitches a list of images vertically."""
|
| 76 |
+
if not images:
|
| 77 |
+
return Image.new('RGB', (100, 100), color='gray')
|
| 78 |
+
|
| 79 |
+
max_width = max([img.width for img in images])
|
| 80 |
+
total_height = sum(img.height for img in images)
|
| 81 |
+
|
| 82 |
+
composite = Image.new('RGB', (max_width, total_height))
|
| 83 |
+
|
| 84 |
+
y_offset = 0
|
| 85 |
+
for img in images:
|
| 86 |
+
composite.paste(img, (0, y_offset))
|
| 87 |
+
y_offset += img.height
|
| 88 |
+
|
| 89 |
+
return composite
|
| 90 |
+
|
| 91 |
+
# Main functions
|
| 92 |
+
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3):
|
| 93 |
+
target_sizes = torch.Tensor([target_image.size[::-1]])
|
| 94 |
+
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device)
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
outputs = model.image_guided_detection(**inputs)
|
| 97 |
+
|
| 98 |
+
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB)
|
| 99 |
+
outputs.logits = outputs.logits.cpu()
|
| 100 |
+
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
|
| 101 |
+
|
| 102 |
+
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
|
| 103 |
+
boxes, scores = results[0]["boxes"], results[0]["scores"]
|
| 104 |
+
|
| 105 |
+
if len(boxes) == 0:
|
| 106 |
+
return [], None
|
| 107 |
+
|
| 108 |
+
filtered_boxes = []
|
| 109 |
+
for box in boxes:
|
| 110 |
+
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
|
| 111 |
+
cropped_img = img[y1:y2, x1:x2]
|
| 112 |
+
if cropped_img.size != 0:
|
| 113 |
+
filtered_boxes.append(cropped_img)
|
| 114 |
+
|
| 115 |
+
draw = ImageDraw.Draw(target_image)
|
| 116 |
+
for box in boxes:
|
| 117 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
| 118 |
+
|
| 119 |
+
return filtered_boxes, target_image
|
| 120 |
+
|
| 121 |
+
def image_matching_no_pyramid(query_img, target_img, visualize=True):
|
| 122 |
+
temp_query = save_array_to_temp_image(np.array(query_img))
|
| 123 |
+
temp_target = save_array_to_temp_image(np.array(target_img))
|
| 124 |
+
|
| 125 |
+
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True)
|
| 126 |
+
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True)
|
| 127 |
+
|
| 128 |
+
if image0 is None or image1 is None:
|
| 129 |
+
return None
|
| 130 |
+
|
| 131 |
+
pred = matching({'image0': inp0, 'image1': inp1})
|
| 132 |
+
pred = {k: v[0] for k, v in pred.items()}
|
| 133 |
+
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
|
| 134 |
+
matches, conf = pred['matches0'], pred['matching_scores0']
|
| 135 |
+
|
| 136 |
+
valid = matches > -1
|
| 137 |
+
mkpts0 = kpts0[valid]
|
| 138 |
+
mkpts1 = kpts1[matches[valid]]
|
| 139 |
+
mconf = conf[valid]
|
| 140 |
+
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)]
|
| 141 |
+
|
| 142 |
+
valid_count = np.sum(valid.tolist())
|
| 143 |
+
|
| 144 |
+
mkpts0_np = mkpts0.cpu().numpy()
|
| 145 |
+
mkpts1_np = mkpts1.cpu().numpy()
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
|
| 149 |
+
except:
|
| 150 |
+
inliers = 0
|
| 151 |
+
|
| 152 |
+
num_inliers = np.sum(inliers)
|
| 153 |
+
|
| 154 |
+
if visualize:
|
| 155 |
+
visualized_img = unified_matching_plot2(
|
| 156 |
+
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', [])
|
| 157 |
+
else:
|
| 158 |
+
visualized_img = None
|
| 159 |
+
|
| 160 |
+
return {
|
| 161 |
+
'valid': [valid_count],
|
| 162 |
+
'inliers': [num_inliers],
|
| 163 |
+
'visualized_image': [visualized_img]
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]):
|
| 167 |
+
images_to_return = []
|
| 168 |
+
cropped_images, bbox_image = detect_and_crop(target_image, query_image)
|
| 169 |
+
|
| 170 |
+
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
|
| 171 |
+
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files]
|
| 172 |
+
|
| 173 |
+
cropped_visuals = []
|
| 174 |
+
cropped_inliers = []
|
| 175 |
+
for result in crop_results:
|
| 176 |
+
if result:
|
| 177 |
+
for img in result['visualized_image']:
|
| 178 |
+
cropped_visuals.append(Image.fromarray(img))
|
| 179 |
+
for inliers_ in result['inliers']:
|
| 180 |
+
cropped_inliers.append(inliers_)
|
| 181 |
+
|
| 182 |
+
images_to_return.append(stitch_images(cropped_visuals))
|
| 183 |
+
|
| 184 |
+
is_present = any(value >= threshold for value in cropped_inliers)
|
| 185 |
+
|
| 186 |
+
return {
|
| 187 |
+
'is_present': is_present,
|
| 188 |
+
'image_with_boxes': bbox_image,
|
| 189 |
+
'object_detection_inliers': [int(i) for i in cropped_inliers],
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
def interface(poster_source, media_source, threshold, scale_factor):
|
| 193 |
+
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
|
| 194 |
+
if result1['is_present']:
|
| 195 |
+
return result1['is_present'], result1['image_with_boxes']
|
| 196 |
+
|
| 197 |
+
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
|
| 198 |
+
return result2['is_present'], result2['image_with_boxes']
|
| 199 |
+
|
| 200 |
+
iface = gr.Interface(
|
| 201 |
+
fn=interface,
|
| 202 |
+
inputs=[
|
| 203 |
+
gr.Image(type="pil", label="Upload a Query Image (Poster)"),
|
| 204 |
+
gr.Image(type="pil", label="Upload a Target Image (Media)"),
|
| 205 |
+
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"),
|
| 206 |
+
gr.CheckboxGroup(choices=["0.33", "0.66", "1.0"], value=["0.33", "0.66", "1.0"], label="Scale Factors"),
|
| 207 |
+
],
|
| 208 |
+
outputs=[
|
| 209 |
+
gr.Label(label="Object Presence"),
|
| 210 |
+
gr.Image(type="pil", label="Detected Bounding Boxes"),
|
| 211 |
+
],
|
| 212 |
+
title="Object Detection in Images",
|
| 213 |
+
description="""
|
| 214 |
+
This application allows you to check if an object in a query image (poster) is present in a target image (media).
|
| 215 |
+
Steps:
|
| 216 |
+
1. Upload a Query Image (Poster)
|
| 217 |
+
2. Upload a Target Image (Media)
|
| 218 |
+
3. Set Threshold
|
| 219 |
+
4. Set Scale Factors
|
| 220 |
+
5. View Results
|
| 221 |
+
"""
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
if __name__ == "__main__":
|
| 225 |
+
iface.launch()
|
gitattributes
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
SuperGluePretrainedNetwork/assets/freiburg_matches.gif filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
Samples/Images/Frame[[:space:]]13.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
Samples/Images/Frame[[:space:]]14.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
Samples/Images/Frame[[:space:]]3.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
Samples/Images/Frame[[:space:]]5.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
Samples/Images/Frame[[:space:]]6.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
Samples/Images/sub-buzz-16648-1550412154-1.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
Samples/Images/Test3.png filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
Samples/Poster/ForScale.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
Samples/Poster/ForScaleG.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
Samples/Poster/ForScaleM.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
Samples/Poster/ForScaleMM.png filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
Samples/Poster/poster_event_small.png filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
Samples/Poster/poster_event.png filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
numpy
|
| 6 |
+
Pillow
|
| 7 |
+
opencv-python
|
| 8 |
+
matplotlib
|