edouardfoussier's picture
Switch Space to Gradio app with HF Inference API
845a31e
raw
history blame
7.65 kB
import os
import ast
import json
import threading
from typing import List, Dict, Any, Optional, Tuple
import gradio as gr
import numpy as np
from datasets import load_dataset
from huggingface_hub import InferenceClient
# ------------------
# Config
# ------------------
EMBED_COL = os.getenv("EMBED_COL", "embeddings_bge-m3")
DATASETS = [
("edouardfoussier/travail-emploi-clean", "train"),
("edouardfoussier/service-public-filtered", "train"),
]
HF_EMBED_MODEL = os.getenv("HF_EMBEDDINGS_MODEL", "BAAI/bge-m3")
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "") # set in Space → Settings → Variables
# Optional: limit rows per dataset to keep RAM in check while testing
MAX_ROWS = int(os.getenv("MAX_ROWS_PER_DATASET", "0")) # 0 = no limit
# Try FAISS; fall back to NumPy
_USE_FAISS = True
try:
import faiss # type: ignore
except Exception:
_USE_FAISS = False
# ------------------
# Embedding client
# ------------------
_embed_client: Optional[InferenceClient] = None
def _get_embed_client() -> InferenceClient:
global _embed_client
if _embed_client is None:
mid = HF_EMBED_MODEL.strip()
# Auto-fix very common bad value like "sentence-transformers/BAAI/bge-m3"
if mid.lower().startswith("sentence-transformers/baai/"):
mid = mid.split("/", 1)[1] # -> "BAAI/bge-m3"
if mid.count("/") != 1:
raise ValueError(
f"HF_EMBEDDINGS_MODEL must be 'owner/name', got '{mid}'. "
"Examples: 'BAAI/bge-m3', 'sentence-transformers/all-MiniLM-L6-v2'."
)
if not HF_API_TOKEN:
raise RuntimeError(
"HF_API_TOKEN is not set. Go to Space → Settings → Variables and add HF_API_TOKEN (a WRITE token)."
)
_embed_client = InferenceClient(model=mid, token=HF_API_TOKEN, repo_type="model")
return _embed_client
# ------------------
# Vector helpers
# ------------------
def _to_vec(x):
if isinstance(x, list):
return np.asarray(x, dtype=np.float32)
if isinstance(x, str):
return np.asarray(ast.literal_eval(x), dtype=np.float32)
raise TypeError(f"Unsupported embedding type: {type(x)}")
def _normalize(v: np.ndarray) -> np.ndarray:
v = v.astype(np.float32, copy=False)
n = np.linalg.norm(v) + 1e-12
return v / n
def _embed_query(text: str) -> np.ndarray:
vec = _get_embed_client().feature_extraction(text)
v = np.asarray(vec, dtype=np.float32)
if v.ndim == 2:
v = v[0]
return _normalize(v)
# ------------------
# Index storage
# ------------------
_index = None # faiss index or raw matrix (np.ndarray)
_payloads: List[Dict[str, Any]] = []
_dim = None
_lock = threading.Lock()
def _load_datasets() -> Tuple[np.ndarray, List[Dict[str, Any]]]:
vecs, payloads = [], []
for name, split in DATASETS:
ds = load_dataset(name, split=split)
if MAX_ROWS > 0:
ds = ds.select(range(min(MAX_ROWS, len(ds))))
for row in ds:
v = _normalize(_to_vec(row[EMBED_COL]))
vecs.append(v)
p = dict(row)
p.pop(EMBED_COL, None)
payloads.append(p)
X = np.stack(vecs, axis=0) if vecs else np.zeros((0, 1), dtype=np.float32)
return X, payloads
def _build_index() -> Tuple[Any, List[Dict[str, Any]], int]:
X, payloads = _load_datasets()
if X.size == 0:
return (np.zeros((0, 1), dtype=np.float32), payloads, 1)
dim = X.shape[1]
if _USE_FAISS:
idx = faiss.IndexFlatIP(dim)
idx.add(X)
else:
idx = X # NumPy fallback
return idx, payloads, dim
def _ensure_index_loaded():
global _index, _payloads, _dim
if _index is not None:
return
with _lock:
if _index is not None:
return
idx, pls, d = _build_index()
_index, _payloads, _dim = idx, pls, d
def _search_ip_numpy(X: np.ndarray, q: np.ndarray, k: int):
# Both normalized => inner product = cosine similarity
scores = X @ q
k = min(k, len(scores))
part = np.argpartition(-scores, k - 1)[:k]
order = part[np.argsort(-scores[part])]
return scores[order], order
def _search(query: str, k: int, source_filter: Optional[str]) -> List[Dict[str, Any]]:
_ensure_index_loaded()
if _dim is None or (_USE_FAISS and _index.ntotal == 0) or (not _USE_FAISS and _index.shape[0] == 0):
return []
q = _embed_query(query)
if _USE_FAISS:
D, I = _index.search(q[None, :], k)
scores, idxs = D[0], I[0]
else:
scores, idxs = _search_ip_numpy(_index, q, k)
out = []
for idx, sc in zip(idxs, scores):
if int(idx) < 0:
continue
pl = _payloads[int(idx)]
if source_filter and pl.get("source") != source_filter:
continue
out.append({
"id": str(int(idx)),
"score": float(sc),
"title": (pl.get("title") or "").strip() or "(Sans titre)",
"url": pl.get("url") or "",
"source": pl.get("source") or "",
"snippet": (pl.get("text") or pl.get("chunk_text") or "")[:500]
})
return out
# ------------------
# Gradio UI
# ------------------
def do_search(query, source, top_k):
try:
if not query or not query.strip():
return gr.update(value="<i>Entrez une question…</i>", visible=True)
src_filter = None if (not source or source == "(Tous)") else source
hits = _search(query.strip(), int(top_k), src_filter)
if not hits:
return gr.update(value="<b>0 résultat</b>", visible=True)
lines = [f"<b>Top {len(hits)} résultats</b><br>"]
for i, h in enumerate(hits, 1):
badge = {
"travail-emploi": '<span style="background:#2563eb;color:white;padding:2px 6px;border-radius:999px;font-size:12px">travail-emploi</span>',
"service-public": '<span style="background:#059669;color:white;padding:2px 6px;border-radius:999px;font-size:12px">service-public</span>',
}.get(h["source"].lower(), f'<span style="background:#6b7280;color:white;padding:2px 6px;border-radius:999px;font-size:12px">{h["source"] or "unknown"}</span>')
title = h["title"]
url = h["url"]
score = f"{h['score']:.3f}"
head = f"#{i} {badge} "
head += f'<a href="{url}" target="_blank">{title}</a>' if url else title
lines.append(f"{head} &nbsp;&nbsp; <code>cos={score}</code><br>")
if h["snippet"]:
lines.append(f"<div style='margin-left:1rem;color:#444'>{h['snippet']}</div><br>")
return gr.update(value="\n".join(lines), visible=True)
except Exception as e:
return gr.update(value=f"<b>Erreur:</b> {e}", visible=True)
with gr.Blocks(title="RAG-RH (Gradio)") as demo:
gr.Markdown("## 🔎 Assistant RH — RAG Demo (Gradio)")
with gr.Row():
query = gr.Textbox(label="Votre question", placeholder="Posez votre question…", scale=3)
run = gr.Button("Rechercher", variant="primary", scale=1)
with gr.Row():
source = gr.Dropdown(choices=["(Tous)", "travail-emploi", "service-public"],
value="(Tous)", label="Filtre", scale=1)
topk = gr.Slider(3, 30, value=8, step=1, label="Top-K", scale=2)
out = gr.HTML(visible=False)
run.click(do_search, inputs=[query, source, topk], outputs=out)
query.submit(do_search, inputs=[query, source, topk], outputs=out)
if __name__ == "__main__":
# For local testing: `python app.py`
demo.launch(server_name="0.0.0.0", server_port=7860)