Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
845a31e
0
Parent(s):
Switch Space to Gradio app with HF Inference API
Browse files- app.py +208 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import ast
|
| 3 |
+
import json
|
| 4 |
+
import threading
|
| 5 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
from huggingface_hub import InferenceClient
|
| 11 |
+
|
| 12 |
+
# ------------------
|
| 13 |
+
# Config
|
| 14 |
+
# ------------------
|
| 15 |
+
EMBED_COL = os.getenv("EMBED_COL", "embeddings_bge-m3")
|
| 16 |
+
DATASETS = [
|
| 17 |
+
("edouardfoussier/travail-emploi-clean", "train"),
|
| 18 |
+
("edouardfoussier/service-public-filtered", "train"),
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
HF_EMBED_MODEL = os.getenv("HF_EMBEDDINGS_MODEL", "BAAI/bge-m3")
|
| 22 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "") # set in Space → Settings → Variables
|
| 23 |
+
|
| 24 |
+
# Optional: limit rows per dataset to keep RAM in check while testing
|
| 25 |
+
MAX_ROWS = int(os.getenv("MAX_ROWS_PER_DATASET", "0")) # 0 = no limit
|
| 26 |
+
|
| 27 |
+
# Try FAISS; fall back to NumPy
|
| 28 |
+
_USE_FAISS = True
|
| 29 |
+
try:
|
| 30 |
+
import faiss # type: ignore
|
| 31 |
+
except Exception:
|
| 32 |
+
_USE_FAISS = False
|
| 33 |
+
|
| 34 |
+
# ------------------
|
| 35 |
+
# Embedding client
|
| 36 |
+
# ------------------
|
| 37 |
+
_embed_client: Optional[InferenceClient] = None
|
| 38 |
+
def _get_embed_client() -> InferenceClient:
|
| 39 |
+
global _embed_client
|
| 40 |
+
if _embed_client is None:
|
| 41 |
+
mid = HF_EMBED_MODEL.strip()
|
| 42 |
+
|
| 43 |
+
# Auto-fix very common bad value like "sentence-transformers/BAAI/bge-m3"
|
| 44 |
+
if mid.lower().startswith("sentence-transformers/baai/"):
|
| 45 |
+
mid = mid.split("/", 1)[1] # -> "BAAI/bge-m3"
|
| 46 |
+
|
| 47 |
+
if mid.count("/") != 1:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"HF_EMBEDDINGS_MODEL must be 'owner/name', got '{mid}'. "
|
| 50 |
+
"Examples: 'BAAI/bge-m3', 'sentence-transformers/all-MiniLM-L6-v2'."
|
| 51 |
+
)
|
| 52 |
+
if not HF_API_TOKEN:
|
| 53 |
+
raise RuntimeError(
|
| 54 |
+
"HF_API_TOKEN is not set. Go to Space → Settings → Variables and add HF_API_TOKEN (a WRITE token)."
|
| 55 |
+
)
|
| 56 |
+
_embed_client = InferenceClient(model=mid, token=HF_API_TOKEN, repo_type="model")
|
| 57 |
+
return _embed_client
|
| 58 |
+
|
| 59 |
+
# ------------------
|
| 60 |
+
# Vector helpers
|
| 61 |
+
# ------------------
|
| 62 |
+
def _to_vec(x):
|
| 63 |
+
if isinstance(x, list):
|
| 64 |
+
return np.asarray(x, dtype=np.float32)
|
| 65 |
+
if isinstance(x, str):
|
| 66 |
+
return np.asarray(ast.literal_eval(x), dtype=np.float32)
|
| 67 |
+
raise TypeError(f"Unsupported embedding type: {type(x)}")
|
| 68 |
+
|
| 69 |
+
def _normalize(v: np.ndarray) -> np.ndarray:
|
| 70 |
+
v = v.astype(np.float32, copy=False)
|
| 71 |
+
n = np.linalg.norm(v) + 1e-12
|
| 72 |
+
return v / n
|
| 73 |
+
|
| 74 |
+
def _embed_query(text: str) -> np.ndarray:
|
| 75 |
+
vec = _get_embed_client().feature_extraction(text)
|
| 76 |
+
v = np.asarray(vec, dtype=np.float32)
|
| 77 |
+
if v.ndim == 2:
|
| 78 |
+
v = v[0]
|
| 79 |
+
return _normalize(v)
|
| 80 |
+
|
| 81 |
+
# ------------------
|
| 82 |
+
# Index storage
|
| 83 |
+
# ------------------
|
| 84 |
+
_index = None # faiss index or raw matrix (np.ndarray)
|
| 85 |
+
_payloads: List[Dict[str, Any]] = []
|
| 86 |
+
_dim = None
|
| 87 |
+
_lock = threading.Lock()
|
| 88 |
+
|
| 89 |
+
def _load_datasets() -> Tuple[np.ndarray, List[Dict[str, Any]]]:
|
| 90 |
+
vecs, payloads = [], []
|
| 91 |
+
for name, split in DATASETS:
|
| 92 |
+
ds = load_dataset(name, split=split)
|
| 93 |
+
if MAX_ROWS > 0:
|
| 94 |
+
ds = ds.select(range(min(MAX_ROWS, len(ds))))
|
| 95 |
+
for row in ds:
|
| 96 |
+
v = _normalize(_to_vec(row[EMBED_COL]))
|
| 97 |
+
vecs.append(v)
|
| 98 |
+
p = dict(row)
|
| 99 |
+
p.pop(EMBED_COL, None)
|
| 100 |
+
payloads.append(p)
|
| 101 |
+
X = np.stack(vecs, axis=0) if vecs else np.zeros((0, 1), dtype=np.float32)
|
| 102 |
+
return X, payloads
|
| 103 |
+
|
| 104 |
+
def _build_index() -> Tuple[Any, List[Dict[str, Any]], int]:
|
| 105 |
+
X, payloads = _load_datasets()
|
| 106 |
+
if X.size == 0:
|
| 107 |
+
return (np.zeros((0, 1), dtype=np.float32), payloads, 1)
|
| 108 |
+
dim = X.shape[1]
|
| 109 |
+
if _USE_FAISS:
|
| 110 |
+
idx = faiss.IndexFlatIP(dim)
|
| 111 |
+
idx.add(X)
|
| 112 |
+
else:
|
| 113 |
+
idx = X # NumPy fallback
|
| 114 |
+
return idx, payloads, dim
|
| 115 |
+
|
| 116 |
+
def _ensure_index_loaded():
|
| 117 |
+
global _index, _payloads, _dim
|
| 118 |
+
if _index is not None:
|
| 119 |
+
return
|
| 120 |
+
with _lock:
|
| 121 |
+
if _index is not None:
|
| 122 |
+
return
|
| 123 |
+
idx, pls, d = _build_index()
|
| 124 |
+
_index, _payloads, _dim = idx, pls, d
|
| 125 |
+
|
| 126 |
+
def _search_ip_numpy(X: np.ndarray, q: np.ndarray, k: int):
|
| 127 |
+
# Both normalized => inner product = cosine similarity
|
| 128 |
+
scores = X @ q
|
| 129 |
+
k = min(k, len(scores))
|
| 130 |
+
part = np.argpartition(-scores, k - 1)[:k]
|
| 131 |
+
order = part[np.argsort(-scores[part])]
|
| 132 |
+
return scores[order], order
|
| 133 |
+
|
| 134 |
+
def _search(query: str, k: int, source_filter: Optional[str]) -> List[Dict[str, Any]]:
|
| 135 |
+
_ensure_index_loaded()
|
| 136 |
+
if _dim is None or (_USE_FAISS and _index.ntotal == 0) or (not _USE_FAISS and _index.shape[0] == 0):
|
| 137 |
+
return []
|
| 138 |
+
q = _embed_query(query)
|
| 139 |
+
if _USE_FAISS:
|
| 140 |
+
D, I = _index.search(q[None, :], k)
|
| 141 |
+
scores, idxs = D[0], I[0]
|
| 142 |
+
else:
|
| 143 |
+
scores, idxs = _search_ip_numpy(_index, q, k)
|
| 144 |
+
out = []
|
| 145 |
+
for idx, sc in zip(idxs, scores):
|
| 146 |
+
if int(idx) < 0:
|
| 147 |
+
continue
|
| 148 |
+
pl = _payloads[int(idx)]
|
| 149 |
+
if source_filter and pl.get("source") != source_filter:
|
| 150 |
+
continue
|
| 151 |
+
out.append({
|
| 152 |
+
"id": str(int(idx)),
|
| 153 |
+
"score": float(sc),
|
| 154 |
+
"title": (pl.get("title") or "").strip() or "(Sans titre)",
|
| 155 |
+
"url": pl.get("url") or "",
|
| 156 |
+
"source": pl.get("source") or "",
|
| 157 |
+
"snippet": (pl.get("text") or pl.get("chunk_text") or "")[:500]
|
| 158 |
+
})
|
| 159 |
+
return out
|
| 160 |
+
|
| 161 |
+
# ------------------
|
| 162 |
+
# Gradio UI
|
| 163 |
+
# ------------------
|
| 164 |
+
def do_search(query, source, top_k):
|
| 165 |
+
try:
|
| 166 |
+
if not query or not query.strip():
|
| 167 |
+
return gr.update(value="<i>Entrez une question…</i>", visible=True)
|
| 168 |
+
src_filter = None if (not source or source == "(Tous)") else source
|
| 169 |
+
hits = _search(query.strip(), int(top_k), src_filter)
|
| 170 |
+
if not hits:
|
| 171 |
+
return gr.update(value="<b>0 résultat</b>", visible=True)
|
| 172 |
+
|
| 173 |
+
lines = [f"<b>Top {len(hits)} résultats</b><br>"]
|
| 174 |
+
for i, h in enumerate(hits, 1):
|
| 175 |
+
badge = {
|
| 176 |
+
"travail-emploi": '<span style="background:#2563eb;color:white;padding:2px 6px;border-radius:999px;font-size:12px">travail-emploi</span>',
|
| 177 |
+
"service-public": '<span style="background:#059669;color:white;padding:2px 6px;border-radius:999px;font-size:12px">service-public</span>',
|
| 178 |
+
}.get(h["source"].lower(), f'<span style="background:#6b7280;color:white;padding:2px 6px;border-radius:999px;font-size:12px">{h["source"] or "unknown"}</span>')
|
| 179 |
+
title = h["title"]
|
| 180 |
+
url = h["url"]
|
| 181 |
+
score = f"{h['score']:.3f}"
|
| 182 |
+
head = f"#{i} {badge} "
|
| 183 |
+
head += f'<a href="{url}" target="_blank">{title}</a>' if url else title
|
| 184 |
+
lines.append(f"{head} <code>cos={score}</code><br>")
|
| 185 |
+
if h["snippet"]:
|
| 186 |
+
lines.append(f"<div style='margin-left:1rem;color:#444'>{h['snippet']}</div><br>")
|
| 187 |
+
return gr.update(value="\n".join(lines), visible=True)
|
| 188 |
+
except Exception as e:
|
| 189 |
+
return gr.update(value=f"<b>Erreur:</b> {e}", visible=True)
|
| 190 |
+
|
| 191 |
+
with gr.Blocks(title="RAG-RH (Gradio)") as demo:
|
| 192 |
+
gr.Markdown("## 🔎 Assistant RH — RAG Demo (Gradio)")
|
| 193 |
+
with gr.Row():
|
| 194 |
+
query = gr.Textbox(label="Votre question", placeholder="Posez votre question…", scale=3)
|
| 195 |
+
run = gr.Button("Rechercher", variant="primary", scale=1)
|
| 196 |
+
with gr.Row():
|
| 197 |
+
source = gr.Dropdown(choices=["(Tous)", "travail-emploi", "service-public"],
|
| 198 |
+
value="(Tous)", label="Filtre", scale=1)
|
| 199 |
+
topk = gr.Slider(3, 30, value=8, step=1, label="Top-K", scale=2)
|
| 200 |
+
|
| 201 |
+
out = gr.HTML(visible=False)
|
| 202 |
+
|
| 203 |
+
run.click(do_search, inputs=[query, source, topk], outputs=out)
|
| 204 |
+
query.submit(do_search, inputs=[query, source, topk], outputs=out)
|
| 205 |
+
|
| 206 |
+
if __name__ == "__main__":
|
| 207 |
+
# For local testing: `python app.py`
|
| 208 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=5.40
|
| 2 |
+
datasets>=2.19.0
|
| 3 |
+
huggingface-hub>=0.19
|
| 4 |
+
faiss-cpu==1.7.4
|
| 5 |
+
numpy<2
|