Spaces:
Sleeping
Sleeping
Commit
·
845a31e
0
Parent(s):
Switch Space to Gradio app with HF Inference API
Browse files- app.py +208 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import ast
|
3 |
+
import json
|
4 |
+
import threading
|
5 |
+
from typing import List, Dict, Any, Optional, Tuple
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
from datasets import load_dataset
|
10 |
+
from huggingface_hub import InferenceClient
|
11 |
+
|
12 |
+
# ------------------
|
13 |
+
# Config
|
14 |
+
# ------------------
|
15 |
+
EMBED_COL = os.getenv("EMBED_COL", "embeddings_bge-m3")
|
16 |
+
DATASETS = [
|
17 |
+
("edouardfoussier/travail-emploi-clean", "train"),
|
18 |
+
("edouardfoussier/service-public-filtered", "train"),
|
19 |
+
]
|
20 |
+
|
21 |
+
HF_EMBED_MODEL = os.getenv("HF_EMBEDDINGS_MODEL", "BAAI/bge-m3")
|
22 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "") # set in Space → Settings → Variables
|
23 |
+
|
24 |
+
# Optional: limit rows per dataset to keep RAM in check while testing
|
25 |
+
MAX_ROWS = int(os.getenv("MAX_ROWS_PER_DATASET", "0")) # 0 = no limit
|
26 |
+
|
27 |
+
# Try FAISS; fall back to NumPy
|
28 |
+
_USE_FAISS = True
|
29 |
+
try:
|
30 |
+
import faiss # type: ignore
|
31 |
+
except Exception:
|
32 |
+
_USE_FAISS = False
|
33 |
+
|
34 |
+
# ------------------
|
35 |
+
# Embedding client
|
36 |
+
# ------------------
|
37 |
+
_embed_client: Optional[InferenceClient] = None
|
38 |
+
def _get_embed_client() -> InferenceClient:
|
39 |
+
global _embed_client
|
40 |
+
if _embed_client is None:
|
41 |
+
mid = HF_EMBED_MODEL.strip()
|
42 |
+
|
43 |
+
# Auto-fix very common bad value like "sentence-transformers/BAAI/bge-m3"
|
44 |
+
if mid.lower().startswith("sentence-transformers/baai/"):
|
45 |
+
mid = mid.split("/", 1)[1] # -> "BAAI/bge-m3"
|
46 |
+
|
47 |
+
if mid.count("/") != 1:
|
48 |
+
raise ValueError(
|
49 |
+
f"HF_EMBEDDINGS_MODEL must be 'owner/name', got '{mid}'. "
|
50 |
+
"Examples: 'BAAI/bge-m3', 'sentence-transformers/all-MiniLM-L6-v2'."
|
51 |
+
)
|
52 |
+
if not HF_API_TOKEN:
|
53 |
+
raise RuntimeError(
|
54 |
+
"HF_API_TOKEN is not set. Go to Space → Settings → Variables and add HF_API_TOKEN (a WRITE token)."
|
55 |
+
)
|
56 |
+
_embed_client = InferenceClient(model=mid, token=HF_API_TOKEN, repo_type="model")
|
57 |
+
return _embed_client
|
58 |
+
|
59 |
+
# ------------------
|
60 |
+
# Vector helpers
|
61 |
+
# ------------------
|
62 |
+
def _to_vec(x):
|
63 |
+
if isinstance(x, list):
|
64 |
+
return np.asarray(x, dtype=np.float32)
|
65 |
+
if isinstance(x, str):
|
66 |
+
return np.asarray(ast.literal_eval(x), dtype=np.float32)
|
67 |
+
raise TypeError(f"Unsupported embedding type: {type(x)}")
|
68 |
+
|
69 |
+
def _normalize(v: np.ndarray) -> np.ndarray:
|
70 |
+
v = v.astype(np.float32, copy=False)
|
71 |
+
n = np.linalg.norm(v) + 1e-12
|
72 |
+
return v / n
|
73 |
+
|
74 |
+
def _embed_query(text: str) -> np.ndarray:
|
75 |
+
vec = _get_embed_client().feature_extraction(text)
|
76 |
+
v = np.asarray(vec, dtype=np.float32)
|
77 |
+
if v.ndim == 2:
|
78 |
+
v = v[0]
|
79 |
+
return _normalize(v)
|
80 |
+
|
81 |
+
# ------------------
|
82 |
+
# Index storage
|
83 |
+
# ------------------
|
84 |
+
_index = None # faiss index or raw matrix (np.ndarray)
|
85 |
+
_payloads: List[Dict[str, Any]] = []
|
86 |
+
_dim = None
|
87 |
+
_lock = threading.Lock()
|
88 |
+
|
89 |
+
def _load_datasets() -> Tuple[np.ndarray, List[Dict[str, Any]]]:
|
90 |
+
vecs, payloads = [], []
|
91 |
+
for name, split in DATASETS:
|
92 |
+
ds = load_dataset(name, split=split)
|
93 |
+
if MAX_ROWS > 0:
|
94 |
+
ds = ds.select(range(min(MAX_ROWS, len(ds))))
|
95 |
+
for row in ds:
|
96 |
+
v = _normalize(_to_vec(row[EMBED_COL]))
|
97 |
+
vecs.append(v)
|
98 |
+
p = dict(row)
|
99 |
+
p.pop(EMBED_COL, None)
|
100 |
+
payloads.append(p)
|
101 |
+
X = np.stack(vecs, axis=0) if vecs else np.zeros((0, 1), dtype=np.float32)
|
102 |
+
return X, payloads
|
103 |
+
|
104 |
+
def _build_index() -> Tuple[Any, List[Dict[str, Any]], int]:
|
105 |
+
X, payloads = _load_datasets()
|
106 |
+
if X.size == 0:
|
107 |
+
return (np.zeros((0, 1), dtype=np.float32), payloads, 1)
|
108 |
+
dim = X.shape[1]
|
109 |
+
if _USE_FAISS:
|
110 |
+
idx = faiss.IndexFlatIP(dim)
|
111 |
+
idx.add(X)
|
112 |
+
else:
|
113 |
+
idx = X # NumPy fallback
|
114 |
+
return idx, payloads, dim
|
115 |
+
|
116 |
+
def _ensure_index_loaded():
|
117 |
+
global _index, _payloads, _dim
|
118 |
+
if _index is not None:
|
119 |
+
return
|
120 |
+
with _lock:
|
121 |
+
if _index is not None:
|
122 |
+
return
|
123 |
+
idx, pls, d = _build_index()
|
124 |
+
_index, _payloads, _dim = idx, pls, d
|
125 |
+
|
126 |
+
def _search_ip_numpy(X: np.ndarray, q: np.ndarray, k: int):
|
127 |
+
# Both normalized => inner product = cosine similarity
|
128 |
+
scores = X @ q
|
129 |
+
k = min(k, len(scores))
|
130 |
+
part = np.argpartition(-scores, k - 1)[:k]
|
131 |
+
order = part[np.argsort(-scores[part])]
|
132 |
+
return scores[order], order
|
133 |
+
|
134 |
+
def _search(query: str, k: int, source_filter: Optional[str]) -> List[Dict[str, Any]]:
|
135 |
+
_ensure_index_loaded()
|
136 |
+
if _dim is None or (_USE_FAISS and _index.ntotal == 0) or (not _USE_FAISS and _index.shape[0] == 0):
|
137 |
+
return []
|
138 |
+
q = _embed_query(query)
|
139 |
+
if _USE_FAISS:
|
140 |
+
D, I = _index.search(q[None, :], k)
|
141 |
+
scores, idxs = D[0], I[0]
|
142 |
+
else:
|
143 |
+
scores, idxs = _search_ip_numpy(_index, q, k)
|
144 |
+
out = []
|
145 |
+
for idx, sc in zip(idxs, scores):
|
146 |
+
if int(idx) < 0:
|
147 |
+
continue
|
148 |
+
pl = _payloads[int(idx)]
|
149 |
+
if source_filter and pl.get("source") != source_filter:
|
150 |
+
continue
|
151 |
+
out.append({
|
152 |
+
"id": str(int(idx)),
|
153 |
+
"score": float(sc),
|
154 |
+
"title": (pl.get("title") or "").strip() or "(Sans titre)",
|
155 |
+
"url": pl.get("url") or "",
|
156 |
+
"source": pl.get("source") or "",
|
157 |
+
"snippet": (pl.get("text") or pl.get("chunk_text") or "")[:500]
|
158 |
+
})
|
159 |
+
return out
|
160 |
+
|
161 |
+
# ------------------
|
162 |
+
# Gradio UI
|
163 |
+
# ------------------
|
164 |
+
def do_search(query, source, top_k):
|
165 |
+
try:
|
166 |
+
if not query or not query.strip():
|
167 |
+
return gr.update(value="<i>Entrez une question…</i>", visible=True)
|
168 |
+
src_filter = None if (not source or source == "(Tous)") else source
|
169 |
+
hits = _search(query.strip(), int(top_k), src_filter)
|
170 |
+
if not hits:
|
171 |
+
return gr.update(value="<b>0 résultat</b>", visible=True)
|
172 |
+
|
173 |
+
lines = [f"<b>Top {len(hits)} résultats</b><br>"]
|
174 |
+
for i, h in enumerate(hits, 1):
|
175 |
+
badge = {
|
176 |
+
"travail-emploi": '<span style="background:#2563eb;color:white;padding:2px 6px;border-radius:999px;font-size:12px">travail-emploi</span>',
|
177 |
+
"service-public": '<span style="background:#059669;color:white;padding:2px 6px;border-radius:999px;font-size:12px">service-public</span>',
|
178 |
+
}.get(h["source"].lower(), f'<span style="background:#6b7280;color:white;padding:2px 6px;border-radius:999px;font-size:12px">{h["source"] or "unknown"}</span>')
|
179 |
+
title = h["title"]
|
180 |
+
url = h["url"]
|
181 |
+
score = f"{h['score']:.3f}"
|
182 |
+
head = f"#{i} {badge} "
|
183 |
+
head += f'<a href="{url}" target="_blank">{title}</a>' if url else title
|
184 |
+
lines.append(f"{head} <code>cos={score}</code><br>")
|
185 |
+
if h["snippet"]:
|
186 |
+
lines.append(f"<div style='margin-left:1rem;color:#444'>{h['snippet']}</div><br>")
|
187 |
+
return gr.update(value="\n".join(lines), visible=True)
|
188 |
+
except Exception as e:
|
189 |
+
return gr.update(value=f"<b>Erreur:</b> {e}", visible=True)
|
190 |
+
|
191 |
+
with gr.Blocks(title="RAG-RH (Gradio)") as demo:
|
192 |
+
gr.Markdown("## 🔎 Assistant RH — RAG Demo (Gradio)")
|
193 |
+
with gr.Row():
|
194 |
+
query = gr.Textbox(label="Votre question", placeholder="Posez votre question…", scale=3)
|
195 |
+
run = gr.Button("Rechercher", variant="primary", scale=1)
|
196 |
+
with gr.Row():
|
197 |
+
source = gr.Dropdown(choices=["(Tous)", "travail-emploi", "service-public"],
|
198 |
+
value="(Tous)", label="Filtre", scale=1)
|
199 |
+
topk = gr.Slider(3, 30, value=8, step=1, label="Top-K", scale=2)
|
200 |
+
|
201 |
+
out = gr.HTML(visible=False)
|
202 |
+
|
203 |
+
run.click(do_search, inputs=[query, source, topk], outputs=out)
|
204 |
+
query.submit(do_search, inputs=[query, source, topk], outputs=out)
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
# For local testing: `python app.py`
|
208 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=5.40
|
2 |
+
datasets>=2.19.0
|
3 |
+
huggingface-hub>=0.19
|
4 |
+
faiss-cpu==1.7.4
|
5 |
+
numpy<2
|