File size: 7,649 Bytes
845a31e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import ast
import json
import threading
from typing import List, Dict, Any, Optional, Tuple

import gradio as gr
import numpy as np
from datasets import load_dataset
from huggingface_hub import InferenceClient

# ------------------
# Config
# ------------------
EMBED_COL = os.getenv("EMBED_COL", "embeddings_bge-m3")
DATASETS = [
    ("edouardfoussier/travail-emploi-clean", "train"),
    ("edouardfoussier/service-public-filtered", "train"),
]

HF_EMBED_MODEL = os.getenv("HF_EMBEDDINGS_MODEL", "BAAI/bge-m3")
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "")  # set in Space → Settings → Variables

# Optional: limit rows per dataset to keep RAM in check while testing
MAX_ROWS = int(os.getenv("MAX_ROWS_PER_DATASET", "0"))  # 0 = no limit

# Try FAISS; fall back to NumPy
_USE_FAISS = True
try:
    import faiss  # type: ignore
except Exception:
    _USE_FAISS = False

# ------------------
# Embedding client
# ------------------
_embed_client: Optional[InferenceClient] = None
def _get_embed_client() -> InferenceClient:
    global _embed_client
    if _embed_client is None:
        mid = HF_EMBED_MODEL.strip()

        # Auto-fix very common bad value like "sentence-transformers/BAAI/bge-m3"
        if mid.lower().startswith("sentence-transformers/baai/"):
            mid = mid.split("/", 1)[1]  # -> "BAAI/bge-m3"

        if mid.count("/") != 1:
            raise ValueError(
                f"HF_EMBEDDINGS_MODEL must be 'owner/name', got '{mid}'. "
                "Examples: 'BAAI/bge-m3', 'sentence-transformers/all-MiniLM-L6-v2'."
            )
        if not HF_API_TOKEN:
            raise RuntimeError(
                "HF_API_TOKEN is not set. Go to Space → Settings → Variables and add HF_API_TOKEN (a WRITE token)."
            )
        _embed_client = InferenceClient(model=mid, token=HF_API_TOKEN, repo_type="model")
    return _embed_client

# ------------------
# Vector helpers
# ------------------
def _to_vec(x):
    if isinstance(x, list):
        return np.asarray(x, dtype=np.float32)
    if isinstance(x, str):
        return np.asarray(ast.literal_eval(x), dtype=np.float32)
    raise TypeError(f"Unsupported embedding type: {type(x)}")

def _normalize(v: np.ndarray) -> np.ndarray:
    v = v.astype(np.float32, copy=False)
    n = np.linalg.norm(v) + 1e-12
    return v / n

def _embed_query(text: str) -> np.ndarray:
    vec = _get_embed_client().feature_extraction(text)
    v = np.asarray(vec, dtype=np.float32)
    if v.ndim == 2:
        v = v[0]
    return _normalize(v)

# ------------------
# Index storage
# ------------------
_index = None           # faiss index or raw matrix (np.ndarray)
_payloads: List[Dict[str, Any]] = []
_dim = None
_lock = threading.Lock()

def _load_datasets() -> Tuple[np.ndarray, List[Dict[str, Any]]]:
    vecs, payloads = [], []
    for name, split in DATASETS:
        ds = load_dataset(name, split=split)
        if MAX_ROWS > 0:
            ds = ds.select(range(min(MAX_ROWS, len(ds))))
        for row in ds:
            v = _normalize(_to_vec(row[EMBED_COL]))
            vecs.append(v)
            p = dict(row)
            p.pop(EMBED_COL, None)
            payloads.append(p)
    X = np.stack(vecs, axis=0) if vecs else np.zeros((0, 1), dtype=np.float32)
    return X, payloads

def _build_index() -> Tuple[Any, List[Dict[str, Any]], int]:
    X, payloads = _load_datasets()
    if X.size == 0:
        return (np.zeros((0, 1), dtype=np.float32), payloads, 1)
    dim = X.shape[1]
    if _USE_FAISS:
        idx = faiss.IndexFlatIP(dim)
        idx.add(X)
    else:
        idx = X  # NumPy fallback
    return idx, payloads, dim

def _ensure_index_loaded():
    global _index, _payloads, _dim
    if _index is not None:
        return
    with _lock:
        if _index is not None:
            return
        idx, pls, d = _build_index()
        _index, _payloads, _dim = idx, pls, d

def _search_ip_numpy(X: np.ndarray, q: np.ndarray, k: int):
    # Both normalized => inner product = cosine similarity
    scores = X @ q
    k = min(k, len(scores))
    part = np.argpartition(-scores, k - 1)[:k]
    order = part[np.argsort(-scores[part])]
    return scores[order], order

def _search(query: str, k: int, source_filter: Optional[str]) -> List[Dict[str, Any]]:
    _ensure_index_loaded()
    if _dim is None or (_USE_FAISS and _index.ntotal == 0) or (not _USE_FAISS and _index.shape[0] == 0):
        return []
    q = _embed_query(query)
    if _USE_FAISS:
        D, I = _index.search(q[None, :], k)
        scores, idxs = D[0], I[0]
    else:
        scores, idxs = _search_ip_numpy(_index, q, k)
    out = []
    for idx, sc in zip(idxs, scores):
        if int(idx) < 0:
            continue
        pl = _payloads[int(idx)]
        if source_filter and pl.get("source") != source_filter:
            continue
        out.append({
            "id": str(int(idx)),
            "score": float(sc),
            "title": (pl.get("title") or "").strip() or "(Sans titre)",
            "url": pl.get("url") or "",
            "source": pl.get("source") or "",
            "snippet": (pl.get("text") or pl.get("chunk_text") or "")[:500]
        })
    return out

# ------------------
# Gradio UI
# ------------------
def do_search(query, source, top_k):
    try:
        if not query or not query.strip():
            return gr.update(value="<i>Entrez une question…</i>", visible=True)
        src_filter = None if (not source or source == "(Tous)") else source
        hits = _search(query.strip(), int(top_k), src_filter)
        if not hits:
            return gr.update(value="<b>0 résultat</b>", visible=True)

        lines = [f"<b>Top {len(hits)} résultats</b><br>"]
        for i, h in enumerate(hits, 1):
            badge = {
                "travail-emploi": '<span style="background:#2563eb;color:white;padding:2px 6px;border-radius:999px;font-size:12px">travail-emploi</span>',
                "service-public": '<span style="background:#059669;color:white;padding:2px 6px;border-radius:999px;font-size:12px">service-public</span>',
            }.get(h["source"].lower(), f'<span style="background:#6b7280;color:white;padding:2px 6px;border-radius:999px;font-size:12px">{h["source"] or "unknown"}</span>')
            title = h["title"]
            url = h["url"]
            score = f"{h['score']:.3f}"
            head = f"#{i} {badge} "
            head += f'<a href="{url}" target="_blank">{title}</a>' if url else title
            lines.append(f"{head} &nbsp;&nbsp; <code>cos={score}</code><br>")
            if h["snippet"]:
                lines.append(f"<div style='margin-left:1rem;color:#444'>{h['snippet']}</div><br>")
        return gr.update(value="\n".join(lines), visible=True)
    except Exception as e:
        return gr.update(value=f"<b>Erreur:</b> {e}", visible=True)

with gr.Blocks(title="RAG-RH (Gradio)") as demo:
    gr.Markdown("## 🔎 Assistant RH — RAG Demo (Gradio)")
    with gr.Row():
        query = gr.Textbox(label="Votre question", placeholder="Posez votre question…", scale=3)
        run = gr.Button("Rechercher", variant="primary", scale=1)
    with gr.Row():
        source = gr.Dropdown(choices=["(Tous)", "travail-emploi", "service-public"],
                             value="(Tous)", label="Filtre", scale=1)
        topk = gr.Slider(3, 30, value=8, step=1, label="Top-K", scale=2)

    out = gr.HTML(visible=False)

    run.click(do_search, inputs=[query, source, topk], outputs=out)
    query.submit(do_search, inputs=[query, source, topk], outputs=out)

if __name__ == "__main__":
    # For local testing: `python app.py`
    demo.launch(server_name="0.0.0.0", server_port=7860)