length-contrast-data-isl / vowel_length.py
catiR
data + demo
1e483fc
raw
history blame
5.37 kB
import os, json
import numpy as np
from collections import defaultdict
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# make subsets of words for convenience
def make_sets(db,shorts,longs):
def _wspec(wd,l1,l2):
if (wd in l1) and (wd in l2):
return(wd,wd)
elif wd in l1:
return(f'{wd} [L1]',wd)
elif wd in l2:
return(f'{wd} [L2]',wd)
else:
return ('','')
def _ksrt(k):
if ' ' in k:
return((k[0],1/len(k)))
else:
return (k.replace(':',''),k[-1] )
words = set([(t['word'],t['speaker_lang']) for t in db])
l1 = [w for w,l in words if l == 'L1']
l2 = [w for w,l in words if l == 'L2']
words = set([w for w,l in words])
wdict = defaultdict(list)
for w in words:
if 'agg' in w:
wdict['AG:'].append(_wspec(w,l1,l2))
elif 'all' in w:
wdict['AL:'].append(_wspec(w,l1,l2))
elif 'egg' in w:
wdict['EG:'].append(_wspec(w,l1,l2))
elif 'eki' in w:
wdict['E:G'].append(_wspec(w,l1,l2))
elif 'aki' in w:
wdict['A:G'].append(_wspec(w,l1,l2))
elif 'ala' in w:
wdict['A:L'].append(_wspec(w,l1,l2))
elif w in shorts:
wdict['OTHER - SHORT'].append(_wspec(w,l1,l2))
elif w in longs:
wdict['OTHER - LONG'].append(_wspec(w,l1,l2))
else:
print(f'something should not have happened: {w}')
sets = [(k, sorted(wdict[k])) for k in sorted(list(wdict.keys()),key = _ksrt)]
return sets
# compile data for a token record
def get_tk_data(tk,shorts,longs):
# merge intervals
# from list of phones
# to word part
def _merge_intervals(plist):
if not plist:
return np.nan
tot_start, tot_end = plist[0]['start'],plist[-1]['end']
tot_dur = tot_end-tot_start
return tot_dur
tkdat = {}
tkdat['word'] = tk['word']
tkdat['speaker_lang'] = tk['speaker_lang']
tkdat['n_pre_phone'] = len(tk['gold_annotation']['prevowel'])
tkdat['n_post_phone'] = len(tk['gold_annotation']['postvowel'])
if tk['word'] in longs:
tkdat['vlen'] = 1
else:
assert tk['word'] in shorts
tkdat['vlen'] = 0
for s in ['gold','mfa']:
tkdat[f'{s}_pre_dur'] = _merge_intervals(tk[f'{s}_annotation']['prevowel'])
tkdat[f'{s}_v_dur'] = _merge_intervals(tk[f'{s}_annotation']['vowel'])
tkdat[f'{s}_post_dur'] = _merge_intervals(tk[f'{s}_annotation']['postvowel'])
tkdat[f'{s}_word_dur'] = tk[f'{s}_annotation']['target_word_end'] -\
tk[f'{s}_annotation']['target_word_start']
return tkdat
# code short vowels 0, long 1
def prep_dat(d):
df = d.copy()
for s in ['gold','mfa']:
df[f'{s}_ratio'] = df[f'{s}_v_dur'] / (df[f'{s}_v_dur']+df[f'{s}_post_dur'])
df[f'{s}_pre_dur'] = df[f'{s}_pre_dur'].fillna(0) # set absent onsets dur zero
df = df.convert_dtypes()
return df
def setup(annot_json):
longs = set(['aki', 'ala', 'baki', 'bera', 'betri', 'blaki', 'breki',
'brosir', 'dala', 'dreki', 'dvala', 'fala', 'fara', 'færa',
'færi', 'gala', 'hausinn', 'jónas', 'katrín', 'kisa', 'koma',
'leki', 'leyfa', 'maki', 'muna', 'nema', 'raki', 'sama',
'speki', 'svala', 'sækja', 'sömu', 'taki', 'tala', 'tvisvar',
'vala', 'veki', 'vinur', 'ása', 'þaki'])
shorts = set(['aggi', 'baggi', 'balla', 'beggi', 'eggi', 'farðu', 'fossinn',
'færði', 'galla', 'hausnum', 'herra', 'jónsson', 'kaggi', 'kalla',
'lalla', 'leggi', 'leyfðu', 'maggi', 'malla', 'mamma', 'missa',
'mömmu', 'nærri', 'palla', 'raggi', 'skeggi', 'snemma', 'sunna',
'tommi', 'veggi','vinnur', 'ásta'])
with open(annot_json, 'r') as handle:
db = json.load(handle)
sets = make_sets(db,shorts,longs)
db = [get_tk_data(tk,shorts,longs) for tk in db]
dat = pd.DataFrame.from_records(db)
dat = prep_dat(dat)
return sets,dat
def vgraph(dat1,l1,src1,lab1,dat2,l2,src2,lab2):
def _gprep(df,l,s):
# color by length + speaker group
ccs = { "lAll" : (0.0, 0.749, 1.0),
"lL1" : (0.122, 0.467, 0.706),
"lL2" : (0.282, 0.82, 0.8),
"sAll" :(0.89, 0.467, 0.761),
"sL1" : (0.863, 0.078, 0.235),
"sL2" : (0.859, 0.439, 0.576),
"xAll" : (0.988, 0.69, 0.004),
"xL1" : (0.984, 0.49, 0.027),
"xL2" : (0.969, 0.835, 0.376)}
vdurs = np.array(df[f'{s}_v_dur'])*1000
cdurs = np.array(df[f'{s}_post_dur'])*1000
rto = np.mean(df[f'{s}_ratio'])
if sum(df['vlen']) == 0:
vl = 's'
elif sum(df['vlen']) == df.shape[0]:
vl = 'l'
else:
vl = 'x'
cc = ccs[f'{vl}{l}']
return vdurs, cdurs, rto, cc
vd1,cd1,ra1,cl1 = _gprep(dat1,l1,src1)
lab1 += f'\n Ratio: {ra1:.3f}'
if src1 == 'gold':
mk1 = '^'
else:
mk1 = '<'
fig, ax = plt.subplots(figsize=(9,7))
ax.set_xlim(0.0,350)
ax.set_ylim(0.0,350)
ax.scatter(vd1,cd1,marker = mk1, label = lab1,
c = [cl1 + (.7,)], edgecolors = [cl1] )
if lab2:
vd2,cd2,ra2,cl2 = _gprep(dat2,l2,src2)
lab2 += f'\n Ratio: {ra2:.3f}'
if src2 == 'gold':
mk2 = 'v'
else:
mk2 = '>'
ax.scatter(vd2,cd2, marker = mk2, label = lab2,
c = [cl2 + (.05,)], edgecolors = [cl2] )
ax.set_title("Stressed vowel & following consonant(s) duration" )
ax.set_xlabel("Vowel duration (ms)")
ax.set_ylabel("Consonant duration (ms)")
#fig.legend(loc=8,ncols=2)
fig.legend(loc=7)
ax.axline((0,0),slope=1,color="darkgray")
fig.tight_layout()
#fig.subplots_adjust(bottom=0.15)
fig.subplots_adjust(right=0.75)
#plt.xticks(ticks=[50,100,150,200,250,300],labels=[])
#plt.yticks(ticks=[100,200,300],labels=[])
return fig