File size: 5,369 Bytes
1e483fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os, json
import numpy as np
from collections import defaultdict
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt


# make subsets of words for convenience
def make_sets(db,shorts,longs):
	
	def _wspec(wd,l1,l2):
		if (wd in l1) and (wd in l2):
			return(wd,wd)
		elif wd in l1:
			return(f'{wd} [L1]',wd)
		elif wd in l2:
			return(f'{wd} [L2]',wd)
		else:
			return ('','')

	def _ksrt(k):
		if ' ' in k:
			return((k[0],1/len(k)))
		else:
			return (k.replace(':',''),k[-1] )
		
	words = set([(t['word'],t['speaker_lang']) for t in db])
	l1 = [w for w,l in words if l == 'L1']
	l2 = [w for w,l in words if l == 'L2']
	words = set([w for w,l in words])

	wdict = defaultdict(list)
	for w in words:
		if 'agg' in w:
			wdict['AG:'].append(_wspec(w,l1,l2))
		elif 'all' in w:
			wdict['AL:'].append(_wspec(w,l1,l2))
		elif 'egg' in w:
			wdict['EG:'].append(_wspec(w,l1,l2))
		elif 'eki' in w:
			wdict['E:G'].append(_wspec(w,l1,l2))
		elif 'aki' in w:
			wdict['A:G'].append(_wspec(w,l1,l2))
		elif 'ala' in w:
			wdict['A:L'].append(_wspec(w,l1,l2))
		elif w in shorts:
			wdict['OTHER - SHORT'].append(_wspec(w,l1,l2))
		elif w in longs:
			wdict['OTHER - LONG'].append(_wspec(w,l1,l2))
		else:
			print(f'something should not have happened: {w}')

			
	sets = [(k, sorted(wdict[k])) for k in sorted(list(wdict.keys()),key = _ksrt)]
	
	return sets
			

# compile data for a token record
def get_tk_data(tk,shorts,longs):

	# merge intervals
	# from list of phones
	# to word part
	def _merge_intervals(plist):
		if not plist:
			return np.nan
		tot_start, tot_end = plist[0]['start'],plist[-1]['end']
		tot_dur = tot_end-tot_start
		return tot_dur

	tkdat = {}
	tkdat['word'] = tk['word']
	tkdat['speaker_lang'] = tk['speaker_lang']
	tkdat['n_pre_phone'] = len(tk['gold_annotation']['prevowel'])
	tkdat['n_post_phone'] = len(tk['gold_annotation']['postvowel'])
	
	if tk['word'] in longs:
		tkdat['vlen'] = 1
	else:
		assert tk['word'] in shorts
		tkdat['vlen'] = 0
		
	for s in ['gold','mfa']:
		tkdat[f'{s}_pre_dur'] = _merge_intervals(tk[f'{s}_annotation']['prevowel'])
		tkdat[f'{s}_v_dur'] = _merge_intervals(tk[f'{s}_annotation']['vowel'])
		tkdat[f'{s}_post_dur'] = _merge_intervals(tk[f'{s}_annotation']['postvowel'])
		tkdat[f'{s}_word_dur'] = tk[f'{s}_annotation']['target_word_end'] -\
		  tk[f'{s}_annotation']['target_word_start']

	return tkdat


# code short vowels 0, long 1
def prep_dat(d):
	df = d.copy()
	for s in ['gold','mfa']:
		df[f'{s}_ratio'] = df[f'{s}_v_dur'] / (df[f'{s}_v_dur']+df[f'{s}_post_dur'])
		df[f'{s}_pre_dur'] = df[f'{s}_pre_dur'].fillna(0) # set absent onsets dur zero
	df = df.convert_dtypes()
	return df


def setup(annot_json):

	longs = set(['aki', 'ala', 'baki', 'bera', 'betri', 'blaki', 'breki',
				'brosir', 'dala', 'dreki', 'dvala', 'fala', 'fara', 'færa',
				'færi', 'gala', 'hausinn', 'jónas', 'katrín', 'kisa', 'koma',
				'leki', 'leyfa', 'maki', 'muna', 'nema', 'raki', 'sama',
				'speki', 'svala', 'sækja', 'sömu', 'taki', 'tala', 'tvisvar',
				'vala', 'veki', 'vinur', 'ása', 'þaki'])
	
	shorts = set(['aggi', 'baggi', 'balla', 'beggi', 'eggi', 'farðu', 'fossinn',
				'færði', 'galla', 'hausnum', 'herra', 'jónsson', 'kaggi', 'kalla',
				'lalla', 'leggi', 'leyfðu', 'maggi', 'malla', 'mamma', 'missa',
				'mömmu', 'nærri', 'palla', 'raggi', 'skeggi', 'snemma', 'sunna',
				'tommi', 'veggi','vinnur', 'ásta'])

	with open(annot_json, 'r') as handle:
		db = json.load(handle)

	sets = make_sets(db,shorts,longs)

	db = [get_tk_data(tk,shorts,longs) for tk in db]
	dat = pd.DataFrame.from_records(db)
	dat = prep_dat(dat)

	return sets,dat



def vgraph(dat1,l1,src1,lab1,dat2,l2,src2,lab2):

	def _gprep(df,l,s):

		# color by length + speaker group
		ccs = { "lAll" : (0.0, 0.749, 1.0),
				"lL1" : (0.122, 0.467, 0.706),
				"lL2" : (0.282, 0.82, 0.8),
				"sAll" :(0.89, 0.467, 0.761),
				"sL1" : (0.863, 0.078, 0.235),
				"sL2" : (0.859, 0.439, 0.576),
				"xAll" : (0.988, 0.69, 0.004),
				"xL1" : (0.984, 0.49, 0.027),
				"xL2" : (0.969, 0.835, 0.376)}

		vdurs = np.array(df[f'{s}_v_dur'])*1000
		cdurs = np.array(df[f'{s}_post_dur'])*1000
		rto = np.mean(df[f'{s}_ratio'])

		if sum(df['vlen']) == 0:
			vl = 's'
		elif sum(df['vlen']) == df.shape[0]:
			vl = 'l'
		else:
			vl = 'x'

		cc = ccs[f'{vl}{l}']

		return vdurs, cdurs, rto, cc

	
	vd1,cd1,ra1,cl1 = _gprep(dat1,l1,src1)
	lab1 += f'\n Ratio: {ra1:.3f}'
	if src1 == 'gold':
		mk1 = '^'
	else:
		mk1 = '<'


	fig, ax = plt.subplots(figsize=(9,7))
	ax.set_xlim(0.0,350)
	ax.set_ylim(0.0,350)

	ax.scatter(vd1,cd1,marker = mk1, label = lab1,
				   c = [cl1 + (.7,)], edgecolors = [cl1] )

	if lab2:
		vd2,cd2,ra2,cl2 = _gprep(dat2,l2,src2)
		lab2 += f'\n Ratio: {ra2:.3f}'
		if src2 == 'gold':
			mk2 = 'v'
		else:
			mk2 = '>'
		ax.scatter(vd2,cd2, marker = mk2, label = lab2,
					c = [cl2 + (.05,)], edgecolors = [cl2] )


	ax.set_title("Stressed vowel & following consonant(s) duration" )
	ax.set_xlabel("Vowel duration (ms)")
	ax.set_ylabel("Consonant duration (ms)")
	#fig.legend(loc=8,ncols=2)
	fig.legend(loc=7)
	
	ax.axline((0,0),slope=1,color="darkgray")
	
	fig.tight_layout()
	#fig.subplots_adjust(bottom=0.15)
	fig.subplots_adjust(right=0.75)

	#plt.xticks(ticks=[50,100,150,200,250,300],labels=[])
	#plt.yticks(ticks=[100,200,300],labels=[])

	return fig