Spaces:
Sleeping
Sleeping
File size: 57,986 Bytes
f9355e9 a3ea5d3 975be11 a3ea5d3 f9355e9 cb6b0b0 975be11 a3ea5d3 1cf9b3e a3ea5d3 f9355e9 975be11 1cf9b3e a3ea5d3 1cf9b3e 790267c 1cf9b3e f9355e9 53e9a2b 975be11 53e9a2b f9355e9 97ff519 f9355e9 975be11 f9355e9 30872a6 f9355e9 a3ea5d3 975be11 8f4cbce 975be11 a3ea5d3 975be11 1cf9b3e 975be11 1cf9b3e a3ea5d3 f9355e9 975be11 f9355e9 8f4cbce 975be11 8f4cbce 04d1b54 8f4cbce 975be11 f9355e9 1cf9b3e 975be11 1cf9b3e 975be11 8f4cbce 1cf9b3e 975be11 30872a6 975be11 53e9a2b 975be11 30872a6 f9355e9 30872a6 1cf9b3e 30872a6 97ff519 30872a6 97ff519 30872a6 97ff519 30872a6 97ff519 30872a6 97ff519 30872a6 97ff519 30872a6 975be11 f9355e9 975be11 a3ea5d3 975be11 8f4cbce 975be11 c274248 8f4cbce 1cf9b3e 8f4cbce c274248 790267c c274248 790267c 8f4cbce c274248 8f4cbce 975be11 8f4cbce 975be11 8f4cbce 975be11 c274248 975be11 c274248 975be11 c274248 975be11 8f4cbce 975be11 8f4cbce 975be11 c274248 8f4cbce 975be11 1cf9b3e 8f4cbce 975be11 8f4cbce c274248 8f4cbce 975be11 8f4cbce 975be11 a3ea5d3 f9355e9 8f4cbce f9355e9 975be11 f9355e9 975be11 8f4cbce f9355e9 8f4cbce f9355e9 975be11 f9355e9 975be11 f9355e9 1cf9b3e 03728c1 1cf9b3e 03728c1 1cf9b3e 03728c1 1cf9b3e 03728c1 1cf9b3e 03728c1 1cf9b3e fe40bb4 1cf9b3e 03728c1 1cf9b3e fe40bb4 1cf9b3e 03728c1 1cf9b3e 8f4cbce 975be11 8f4cbce 975be11 c274248 975be11 c274248 8f4cbce 975be11 8f4cbce 975be11 c274248 8f4cbce 975be11 8f4cbce 975be11 8f4cbce 975be11 8f4cbce c274248 8f4cbce c274248 8f4cbce c274248 8f4cbce c274248 8f4cbce c274248 8f4cbce c274248 8f4cbce 975be11 8f4cbce 1cf9b3e 975be11 8f4cbce 975be11 f9355e9 975be11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
from pathlib import Path
import torch
# from st_on_hover_tabs import on_hover_tabs
import streamlit as st
st.set_page_config(layout="wide")
model_path = './model.iter-700000'
import sys, os
import rdkit
import rdkit.Chem as Chem
from rdkit.Chem.Draw import MolToImage
from rdkit.Chem import Descriptors
from rdkit.Chem import RDConfig
from rdkit.Chem.Draw import rdMolDraw2D
import os
import sys
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
import networkx as nx
from stqdm import stqdm
import base64, io
import pandas as pd
import streamlit_ext as ste
from metrics import Metrics
os.environ['KMP_DUPLICATE_LIB_OK']='True'
sys.path.append('%s/fast_jtnn/' % os.path.dirname(os.path.realpath(__file__)))
from mol_tree import Vocab, MolTree
from jtprop_vae import JTPropVAE
from molbloom import buy
what_new = '''
### Version 1.03
* Add more examples.
'''
css='''
[data-testid="metric-container"] {
width: fit-content;
margin: auto;
}
[data-testid="metric-container"] > div {
width: fit-content;
margin: auto;
}
[data-testid="metric-container"] label {
width: fit-content;
margin: auto;
}
[data-testid="stDataFrameResizable"] {
width: fit-content;
margin: auto;
}
[data-testid="stSidebar"]{
max-width: 300px;
}
'''
st.markdown(f'<style>{css}</style>',unsafe_allow_html=True)
st.markdown("<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'>",unsafe_allow_html=True)
s_buff = io.StringIO()
def img_to_bytes(img_path):
img_bytes = Path(img_path).read_bytes()
encoded = base64.b64encode(img_bytes).decode()
return encoded
def img_to_html(img_path,max_width=500):
img_html = "<img src='data:image/png;base64,{}' class='img-fluid' style='max-width: {}px;'>".format(
img_to_bytes(img_path), max_width
)
return img_html
_mcf = pd.read_csv('./mcf.csv')
_pains = pd.read_csv('./wehi_pains.csv',
names=['smarts', 'names'])
_mcf_filters = [Chem.MolFromSmarts(x) for x in
_mcf['smarts'].values]
_pains_filters = [Chem.MolFromSmarts(x) for x in
_pains['smarts'].values]
def mol_passes_filters_custom(mol,
allowed=None,
isomericSmiles=False):
"""
Checks if mol
* passes MCF and PAINS filters,
* has only allowed atoms
* is not charged
"""
allowed = allowed or {'C', 'N', 'S', 'O', 'F', 'Cl', 'Br', 'H'}
if mol is None:
return 'NoMol'
ring_info = mol.GetRingInfo()
if ring_info.NumRings() != 0 and any(
len(x) >= 8 for x in ring_info.AtomRings()
):
return 'ManyRings'
h_mol = Chem.AddHs(mol)
if any(atom.GetFormalCharge() != 0 for atom in mol.GetAtoms()):
return 'Charged'
if any(atom.GetSymbol() not in allowed for atom in mol.GetAtoms()):
return 'AtomNotAllowed'
if any(h_mol.HasSubstructMatch(smarts) for smarts in _mcf_filters):
return 'MCF'
if any(h_mol.HasSubstructMatch(smarts) for smarts in _pains_filters):
return 'PAINS'
smiles = Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles)
if smiles is None or len(smiles) == 0:
return 'Isomeric'
if Chem.MolFromSmiles(smiles) is None:
return 'Isomeric'
if not check_vocab(Chem.MolToSmiles(mol)):
return 'NoVocab'
return 'YES'
def penalized_logp_standard(mol):
logP_mean = 2.4399606244103639873799239
logP_std = 0.9293197802518905481505840
SA_mean = -2.4485512208785431553792478
SA_std = 0.4603110476923852334429910
cycle_mean = -0.0307270378623088931402396
cycle_std = 0.2163675785228087178335699
log_p = Descriptors.MolLogP(mol)
SA = -sascorer.calculateScore(mol)
# cycle score
cycle_list = nx.cycle_basis(nx.Graph(Chem.rdmolops.GetAdjacencyMatrix(mol)))
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([len(j) for j in cycle_list])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
# print(logP_mean)
standardized_log_p = (log_p - logP_mean) / logP_std
standardized_SA = (SA - SA_mean) / SA_std
standardized_cycle = (cycle_score - cycle_mean) / cycle_std
return log_p,SA,cycle_score,standardized_log_p + standardized_SA + standardized_cycle
def df_to_file(df):
s_buff.seek(0)
df.to_csv(s_buff)
return s_buff.getvalue().encode()
# def download_df(df,id):
# with st.expander(':arrow_down: Download this dataframe'):
# st.markdown("<h4 style='color:tomato;'>Select column(s) to save:</h4>",unsafe_allow_html=True)
# for col in df.columns:
# st.checkbox(col,key=str(id)+'_col_'+str(col))
# st.text_input('File name (.csv):','dataframe',key=str(id)+'_file_name')
# ste.download_button('Download',df_to_file(df[[col for col in df.columns if st.session_state[str(id)+'_col_'+str(col)]]]),st.session_state[str(id)+'_file_name']+'.csv')
lg = rdkit.RDLogger.logger()
lg.setLevel(rdkit.RDLogger.CRITICAL)
if 'current_view' not in st.session_state:
st.session_state['current_view'] = 0
if 'current_step' not in st.session_state:
st.session_state['current_step'] = 0
def set_page_view(id):
st.session_state['current_view'] = id
def get_page_view():
return st.session_state['current_view']
def set_step(id):
st.session_state['current_step'] = id
def get_step():
return st.session_state['current_step']
vocab = [x.strip("\r\n ") for x in open('./vocab.txt')]
vocab_set = set(vocab)
vocab = Vocab(vocab)
def check_vocab(smiles):
cset = set()
mol = MolTree(smiles)
for c in mol.nodes:
cset.add(c.smiles)
return cset.issubset(vocab_set)
@st.cache_resource
def load_model():
model = JTPropVAE(vocab, 450, 56, 20, 3)
if torch.cuda.is_available():
model.load_state_dict(torch.load(model_path))
model.to('cuda')
else:
model.load_state_dict(torch.load(model_path,map_location=torch.device('cpu')))
return model
descrip_dict ={
'logp':'LogP',
'mw':'MW',
'tpsa':'TPSA',
'n_hba':'nHA',
'n_hbd':'nHD'
}
rule_dict = {
'ro5':'RO5',
'pfizer_rule_passed':'PFIZER Rule',
'gsk_rule_passed':'GSK Rule',
'goldentriangle_rule':'GOLDENTRIANGLE Rule'
}
score_dict ={
'qed':'QED',
'sascore' : 'SA score',
'fsp3' : 'Fsp3',
'mce18' : 'MCE-18',
'npscore' : 'NP score'
}
score_pass_dict = {
'qed_passed' : 'QED Passed',
'sascore_passed' : 'SA Passed',
'fsp3_passed' : 'Fsp3 Passed',
'mce18_passed' : 'MCE-18 Passed'
}
filter_dict = {
'pains_filter' : 'PAINS Filter',
'alarm_nmr_filter' : 'ALARM NMR Filter',
'bms_filter' : 'BMS Filter',
'chelator_filter' : 'Chelator Filter'
}
from streamlit_lottie import st_lottie
import requests
def render_animation():
animation_response = requests.get('https://assets1.lottiefiles.com/packages/lf20_vykpwt8b.json')
animation_json = dict()
if animation_response.status_code == 200:
animation_json = animation_response.json()
else:
print("Error in the URL")
return st_lottie(animation_json,height=200,width=300)
def oam_sidebar(step):
st.title('**Optimize a molecule**')
prog_bar = st.progress(0)
# cur_step = get_step()
if step == 0: prog_bar.progress(0)
if step == 1: prog_bar.progress(33)
if step == 2: prog_bar.progress(67)
if step == 3: prog_bar.progress(100)
st.markdown('\n')
# st.markdown(get_step())
color_ls = colorize_step(4,step)
st.markdown("<h4 style='color: "+color_ls[0]+"'>Choose a molecule</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[1]+"'>Choose settings</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[2]+"'>Optimizing a molecule</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[3]+"'>Finished</h4>",unsafe_allow_html=True)
st.markdown("""---""")
with st.expander("# **:green[What's new?]**"):
st.markdown(what_new)
def oab_sidebar(step):
st.title('**Optimize a batch**')
prog_bar = st.progress(0)
# cur_step = get_step()
if step == 0: prog_bar.progress(0)
if step == 1: prog_bar.progress(20)
if step == 2: prog_bar.progress(40)
if step == 3: prog_bar.progress(60)
if step == 4: prog_bar.progress(80)
if step == 5: prog_bar.progress(100)
st.markdown('\n')
# st.markdown(get_step())
color_ls = colorize_step(6,step)
st.markdown("<h4 style='color: "+color_ls[0]+"'>Upload SMILES file</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[1]+"'>Checking SMILES</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[2]+"'>Select scores</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[3]+"'>Choose settings</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[4]+"'>Optimizing a batch</h4>",unsafe_allow_html=True)
st.markdown('|')
st.markdown("<h4 style='color: "+color_ls[5]+"'>Finished</h4>",unsafe_allow_html=True)
st.markdown("""---""")
with st.expander("# **:green[What's new?]**"):
st.markdown(what_new)
def ab_sidebar():
st.title('**About**')
st.markdown("""---""")
with st.expander("# **:green[What's new?]**"):
st.markdown(what_new)
# @st.cache_data(experimental_allow_widgets=True)
# if 'sidebar_con' not in st.session_state:
# sidebar_con = st.empty()
# def render_sidebar(page,step):
# sidebar_con.empty()
# with sidebar_con.container():
# if page == 0:
# with st.sidebar():
# oam_sidebar(step)
def colorize_step(n_step,cur_step):
color_list = ['grey']*n_step
for i in range(cur_step):
color_list[i] = 'mediumseagreen'
color_list[cur_step] = 'tomato'
if cur_step == n_step-1:
color_list[cur_step] = 'mediumseagreen'
return color_list
def form_header():
st.markdown("<h1 style='padding: 25px;text-align: center;color: white;background-color: tomato;'>Molecular Optimization using Junction Tree Variational Autoencoder</h1>",unsafe_allow_html=True)
st.markdown("<h4 style='padding: 10px;text-align: center;color: white;background-color: mediumseagreen;'>Gia-Bao Truong</h4>",unsafe_allow_html=True)
with st.expander(':star2: About the model'):
st.markdown("<p style='text-align: center;'>Based on Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)</p>",unsafe_allow_html=True)
st.markdown("<p style='text-align: center;'>Wengong Jin, Regina Barzilay, Tommi Jaakkola</p>",unsafe_allow_html=True)
# determines button color which should be red when user is on that given step
oam_type = 'primary' if st.session_state['current_view'] == 0 else 'secondary'
oab_type = 'primary' if st.session_state['current_view'] == 1 else 'secondary'
ab_type = 'primary' if st.session_state['current_view'] == 2 else 'secondary'
step_cols = st.columns([.2,.85,.85,.85,.2])
step_cols[1].button('Optimize a molecule',on_click=set_page_view,args=[0],type=oam_type,use_container_width=True)
step_cols[2].button('Optimize a batch',on_click=set_page_view,args=[1],type=oab_type,use_container_width=True)
step_cols[3].button('About',on_click=set_page_view,args=[2],type=ab_type,use_container_width=True)
st.empty()
def form_body():
body_container = st.empty()
###### Optimize a molecule ######
if st.session_state['current_view'] == 0:
body_container.empty()
with body_container.container():
Optimize_a_molecule()
###### Optimize a batch ######
if st.session_state['current_view'] == 1:
body_container.empty()
with body_container.container():
Optimize_a_batch()
###### About ######
if st.session_state['current_view'] == 2:
body_container.empty()
with body_container.container():
About()
def About():
descrip_model = '''
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
'''
img_caption = '''
Figure 3. Overview of our method: A molecular graph G is first decomposed into its junction tree TG, where each colored node in the tree represents a substructure in the molecule. We then encode both the tree and graph into their latent embeddings zT and zG. To decode the molecule, we first reconstruct junction tree from zT , and then assemble nodes in the tree back to the original molecule.'''
with st.sidebar:
sidebar_con = st.empty()
# sidebar_con.empty()
with sidebar_con.container():
ab_sidebar()
with st.expander(':four_leaf_clover: About the author',expanded=True):
st.markdown('')
st.markdown("<h3 style='text-align:center;'>Gia-Bao Truong</h3>",unsafe_allow_html=True)
st.markdown("""<p style='text-align:center;'><i class='fa-brands fa-github'></i> <a href="https://github.com/buchijw">Github</a></p>""",unsafe_allow_html=True)
st.markdown("<p style='text-align:center;'>🤗 <a href='https://huggingface.co/buchijw'>Hugging Face</a></p>",unsafe_allow_html=True)
st.markdown("<h3 style='color:tomato; text-align:center;'>Student at</h3>",unsafe_allow_html=True)
st.markdown("<p style='text-align:center;'>"+
img_to_html('img/about1.png',64)+' '+img_to_html('img/about2.png',64)+
"</p>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align:center;'>Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City</h5>",unsafe_allow_html=True)
st.markdown("<h3 style='color:tomato; text-align:center;'>Team</h3>",unsafe_allow_html=True)
st.markdown("<p style='text-align:center;'>"+
img_to_html('img/about3.png',64)+
"</p>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align:center;'>MedAI</h5>",unsafe_allow_html=True)
st.markdown("<h3 style='color:tomato; text-align:center;'>Team Leader</h3>",unsafe_allow_html=True)
st.markdown("<h5 style='text-align:center;'>Tieu-Long Phan</h5>",unsafe_allow_html=True)
st.markdown("<h6 style='text-align:center;'>University of Medicine and Pharmacy at Ho Chi Minh City</h6>",unsafe_allow_html=True)
st.markdown("<p style='text-align:center;'><i class='fa-brands fa-github'></i> <a href='https://tieulongphan.github.io'>Github</a></p>",unsafe_allow_html=True)
with st.expander(':star2: About the model',expanded=True):
st.markdown("Based on Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)",unsafe_allow_html=True)
st.markdown("<h3 style='color:tomato;'>Citing</h3>",unsafe_allow_html=True)
st.markdown("Paper: [https://arxiv.org/abs/1802.04364](https://arxiv.org/abs/1802.04364)")
st.code('''@misc{jin2019junction,
title={Junction Tree Variational Autoencoder for Molecular Graph Generation},
author={Wengong Jin and Regina Barzilay and Tommi Jaakkola},
year={2019},
eprint={1802.04364},
archivePrefix={arXiv},
primaryClass={cs.LG}
}''')
st.markdown("<h3 style='color:tomato;'>Author</h3>",unsafe_allow_html=True)
st.markdown("Wengong Jin, Regina Barzilay, Tommi Jaakkola",unsafe_allow_html=True)
st.markdown("<h3 style='color:tomato;'>Abstract</h3>",unsafe_allow_html=True)
st.markdown(descrip_model)
ab = st.columns([1,10,1])
ab[1].markdown("<p style='text-align: center;'>"+
img_to_html('img/model_fig.png')+
"</p>", unsafe_allow_html=True)
ab[1].markdown("<p style='text-align: center;'>"+
img_caption+
"</p>",unsafe_allow_html=True)
def Optimize_a_molecule():
st.markdown("<h2 style='text-align: center;'>Optimize a molecule</h2>",unsafe_allow_html=True)
with st.expander(':snowman: :blue[Instruction]'):
guide = """<h4 style='color:tomato;'>Steps to optimize a molucule</h4>
1. Select from examples, or manually enter a valid SMILES string of a molecule.</br>
2. Configure the settings to generate a new molecule. The new molecule should have a higher penalized LogP value.</br>
- Learning rate: How 'far' from the molecule that you want to search.</br>
- Similarity cutoff: How 'similar' to the molecule that you want to search.</br>
- Number of iterations: Number of generation trials.</br>
<h4 style='color:darkturquoise;'>Annotation</h4>
<b>SMILES</b> - Simplified molecular-input line-entry system</br>
<b>LogP</b> - The log of the partition coefficient of a solute between octanol and water, at near infinite dilution</br>
<b>SA score</b> - Synthetic Accessibility Score (lower is better)</br>
<b>Cycle score</b> - A number of carbon rings of size larger than 6 (lower is better)</br>
<b>Penalized LogP</b> - Standardized score of <i>LogP - SA score - Cycle score</i></br>
<b>Similarity</b> - Molecular similarity is calculated via Morgan fingerprint of radius 2 with Tanimoto similarity</br>
"""
st.markdown(guide,unsafe_allow_html=True)
with st.sidebar:
sidebar_con = st.empty()
# sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
# oab_sel_container = st.empty()
if 'checked_single' not in st.session_state:
st.session_state.checked_single = 'NO'
# if 'mode' not in st.session_state:
# st.session_state.mode = 0
if 'single_optimized' not in st.session_state:
st.session_state.single_optimized = False
if 'smiles_checked' not in st.session_state:
st.session_state.smiles_checked = False
if 'compared' not in st.session_state:
st.session_state.compared = False
# with oab_sel_container.container():
sample_mode = {
'-':'',
'Sorafenib':Chem.CanonSmiles('CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F'),
'Pazopanib':Chem.CanonSmiles('CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N'),
'Sunitinib':Chem.CanonSmiles('CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C'),
'Cabozantinib':Chem.CanonSmiles('COC1=CC2=C(C=CN=C2C=C1OC)OC3=CC=C(C=C3)NC(=O)C4(CC4)C(=O)NC5=CC=C(C=C5)F'),
'Axitinib':Chem.CanonSmiles('CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)C=CC4=CC=CC=N4'),
'Lenvatinib':Chem.CanonSmiles('COC1=CC2=NC=CC(=C2C=C1C(=O)N)OC3=CC(=C(C=C3)NC(=O)NC4CC4)Cl'),
'Regorafenib':Chem.CanonSmiles('CNC(=O)C1=NC=CC(=C1)OC2=CC(=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F)F'),
'Vandetanib':Chem.CanonSmiles('CN1CCC(CC1)COC2=C(C=C3C(=C2)N=CN=C3NC4=C(C=C(C=C4)Br)F)OC'),
'Tivozanib': Chem.CanonSmiles('CC1=CC(=NO1)NC(=O)NC2=C(C=C(C=C2)OC3=C4C=C(C(=CC4=NC=C3)OC)OC)Cl')
}
ls_opt = list(sample_mode.keys())
oam_sel_col = st.columns([3,7])
with st.form('sel_smiles'):
mode = oam_sel_col[0].selectbox("Select an example",options=ls_opt,on_change=reset_oam_state)
smiles = oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):',sample_mode[mode],max_chars=200,
disabled=(mode != '-'))
# if mode == '-':
# st.session_state.smiles = oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):',max_chars=200,key='opt_0')
# # st.session_state.mode = 0
# elif mode == 'Sorafenib':
# st.session_state.smiles = 'CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F'
# oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F',max_chars=200,disabled=True,key='opt_1')
# # st.session_state.mode = 1
# elif mode == 'Pazopanib':
# st.session_state.smiles = 'CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N'
# oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N',max_chars=200,disabled=True,key='opt_2')
# # st.session_state.mode = 2
# elif mode == 'Sunitinib':
# st.session_state.smiles = 'CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C'
# oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C',max_chars=200,disabled=True,key='opt_3')
# # st.session_state.mode = 3
check_single_butt = st.form_submit_button('Check SMILES',use_container_width=True)
# st.session_state.smiles = st.session_state['opt_'+str(ls_opt.index(st.session_state.mode))]
if check_single_butt:
st.session_state.mode = mode
st.session_state.smiles = smiles
check_single(st.session_state.smiles)
if 'optim_single_butt' not in locals():
optim_single_butt = False
check_single_con = st.empty()
if 'smiles_selected' in st.session_state:
if st.session_state.smiles_selected:
with check_single_con.container():
if 'checked_single' in st.session_state:
if st.session_state.checked_single == 'EnterError':
st.markdown("<p style='text-align: center; color: red;'><b>Please enter a SMILES string.</b></p>",unsafe_allow_html=True)
# sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
elif st.session_state.checked_single == 'MolError':
st.markdown("<p style='text-align: center; color: red;'><b>SMILES is invalid. Please enter a valid SMILES.</b></p>",unsafe_allow_html=True)
# sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
elif st.session_state.checked_single == 'YES':
if st.session_state.mode != '-':
st.markdown(f"<h4 style='color:mediumseagreen;'>Using example: <b>{st.session_state.mode}</b></h4>",unsafe_allow_html=True)
else:
st.markdown(f"<h4>Selected SMILES</h4>",unsafe_allow_html=True)
st.code(st.session_state.smiles)
st.markdown("<b>Canonicalized SMILES</b>",unsafe_allow_html=True)
st.session_state.canon_smiles = Chem.CanonSmiles(st.session_state.smiles)
st.code(st.session_state.canon_smiles)
st.markdown("<p style='text-align: center; color: mediumseagreen'>MOSES filters passed successfully.</p>",unsafe_allow_html=True)
mol = Chem.MolFromSmiles(st.session_state.canon_smiles)
imgByteArr = io.BytesIO()
MolToImage(mol,size=(400,400)).save(imgByteArr,format='PNG')
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
# st.image(MolToImage(mol,size=(300,300)))
col1, col2, col3, col4 = st.columns(4)
col1.metric('LogP', '%.5f' % (st.session_state.logp))
col2.metric('SA score', '%.5f' % (-st.session_state.sa))
col3.metric('Cycle score', '%d' % (-st.session_state.cycle))
col4.metric('Penalized LogP', '%.5f' % (st.session_state.pen_p))
st.session_state.smiles_checked = True
# render_sidebar()
# col1, col2, col3 = st.columns(3)
# sidebar_con.empty()
with sidebar_con.container():
set_step(1)
oam_sidebar(1)
with st.form(":gear: Settings"):
st.slider('Choose learning rate: ',0.0,5.0,0.4,key='lr_s')
st.slider('Choose similarity cutoff: ',0.0,1.0,0.4,key='sim_cutoff_s')
st.slider('Choose number of iterations: ',1,100,80,key='n_iter_s')
optim_single_butt = st.form_submit_button("Optimize")
else:
st.markdown("<b>Canonicalized SMILES</b>",unsafe_allow_html=True)
st.code(st.session_state.canon_smiles)
if st.session_state.checked_single == 'NoVocab':
st.markdown("<p style='text-align: center; color: red;'><b>The molecule contains unavailable vocab(s). Please use another molecule.</b></p>",unsafe_allow_html=True)
else:
st.markdown("<p style='text-align: center; color: red;'><b>MOSES filters passed failed. Please use another molecule.</b></p>",unsafe_allow_html=True)
# sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oam_sidebar(0)
else: check_single_con.empty()
optim_single_con = st.empty()
compare_single_con = st.empty()
if st.session_state.smiles_checked:
if optim_single_butt:
# sidebar_con.empty()
with sidebar_con.container():
set_step(2)
oam_sidebar(2)
ani_con = st.empty()
with ani_con.container():
st.markdown('Operation in progress. Please wait...')
render_animation()
model = load_model()
st.session_state.new_smiles,st.session_state.sim = optim_single(st.session_state.canon_smiles,model,st.session_state.lr_s,st.session_state.sim_cutoff_s,st.session_state.n_iter_s)
st.session_state.single_optimized = True
ani_con.empty()
# sidebar_con.empty()
if st.session_state.single_optimized:
with optim_single_con.container():
if st.session_state.new_smiles is None:
st.markdown("<h4 style='text-align: center; color: red;'>Cannot optimize! Please choose another setting.</h4>",unsafe_allow_html=True)
else:
st.markdown("<b style='text-align: center;'>New SMILES</b>",unsafe_allow_html=True)
st.code(st.session_state.new_smiles)
new_mol = Chem.MolFromSmiles(st.session_state.new_smiles)
if new_mol is None:
st.markdown("<p style='text-align: center; color: red;'>New SMILES is invalid! Please choose another setting.</p>",unsafe_allow_html=True)
# st.write('New SMILES is invalid.')
else:
# st.write('New SMILES molecule:')
imgByteArr = io.BytesIO()
MolToImage(new_mol,size=(400,400)).save(imgByteArr,format='PNG')
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
new_moses_passed = mol_passes_filters_custom(new_mol)
if new_moses_passed=='YES':
st.markdown("<p style='text-align: center; color: mediumseagreen'>MOSES filters passed successfully.</p>",unsafe_allow_html=True)
else:
st.markdown("<p style='text-align: center; color: red;'><b>MOSES filters passed failed.</b></p>",unsafe_allow_html=True)
st.session_state.new_logp,st.session_state.new_sa,st.session_state.new_cycle,st.session_state.new_pen_p = penalized_logp_standard(new_mol)
# st.write('New penalized logP score: %.5f' % (new_score))
col12, col22, col32, col42 = st.columns(4)
col12.metric('LogP', '%.5f' % (st.session_state.new_logp),'%.5f'%(st.session_state.new_logp-st.session_state.logp))
col22.metric('SA score', '%.5f' % (-st.session_state.new_sa),'%.5f'%(-st.session_state.new_sa+st.session_state.sa),delta_color='inverse')
col32.metric('Cycle score', '%d' % (-st.session_state.new_cycle),'%d'%(-st.session_state.new_cycle+st.session_state.cycle),delta_color='inverse')
col42.metric('Penalized LogP', '%.5f' % (st.session_state.new_pen_p),'%.5f'%(st.session_state.new_pen_p-st.session_state.pen_p))
# st.metric('New penalized logP score','%.5f' % (new_score), '%.5f'%(new_score-score))
st.metric('Similarity','%.5f' % (st.session_state.sim))
# st.write('Caching ZINC20 if necessary...')
with st.spinner("Caching ZINC20 if necessary..."):
if buy(st.session_state.new_smiles, catalog='zinc20',canonicalize=True):
st.write('This molecule exists.')
st.markdown("<h3 style='text-align: center; color: darkturquoise;'><b>This molecule exists.</h3>",unsafe_allow_html=True)
else:
# st.write('THIS MOLECULE DOES NOT EXIST!')
st.markdown("<h3 style='text-align: center; color: mediumseagreen;'>THIS MOLECULE DOES NOT EXIST!</h3>",unsafe_allow_html=True)
st.markdown("<p style='text-align: center; color: grey;'>Checked using molbloom</p>",unsafe_allow_html=True)
if st.button('Compare',use_container_width=True):
st.session_state.compared = True
if st.session_state.compared:
compare_single_con.empty()
with compare_single_con.container():
com_col = st.columns(3)
com_col[1].markdown("<h4 style='text-align: center;'>Original</h4>",unsafe_allow_html=True)
com_col[2].markdown("<h4 style='text-align: center;'>New</h4>",unsafe_allow_html=True)
old_mol = Chem.MolFromSmiles(st.session_state.canon_smiles)
new_mol = Chem.MolFromSmiles(st.session_state.new_smiles)
imgByteArr.seek(0)
MolToImage(old_mol,size=(200,200)).save(imgByteArr,format='PNG')
old_mol_base64 = base64.b64encode(imgByteArr.getvalue()).decode()
imgByteArr.seek(0)
MolToImage(new_mol,size=(200,200)).save(imgByteArr,format='PNG')
new_mol_base64 = base64.b64encode(imgByteArr.getvalue()).decode()
com_col[1].markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{old_mol_base64}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
com_col[2].markdown("<p style='text-align: center;'>"+
f"<img src='data:image/png;base64,{new_mol_base64}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
old_mol_metrics = Metrics(st.session_state.canon_smiles).calculate_all()
new_mol_metrics = Metrics(st.session_state.new_smiles).calculate_all()
value_com_col = st.columns(3)
for met,met_name in descrip_dict.items():
value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
if met not in ['n_hba','n_hbd']:
value_com_col[1].markdown("<p style='text-align: center;'>%.2f</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
value_com_col[2].markdown("<p style='text-align: center;'>%.2f</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
else:
value_com_col[1].markdown("<p style='text-align: center;'>%d</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
value_com_col[2].markdown("<p style='text-align: center;'>%d</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
for met,met_name in rule_dict.items():
value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
old_passed = old_mol_metrics[met]
new_passed = new_mol_metrics[met]
if met == 'ro5':
value_com_col[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed > 3 else 'tomato',old_passed),unsafe_allow_html=True)
value_com_col[2].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed > 3 else 'tomato',new_passed),unsafe_allow_html=True)
else:
value_com_col[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed else 'tomato','Passed' if old_passed else 'Failed'),unsafe_allow_html=True)
value_com_col[2].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed else 'tomato','Passed' if new_passed else 'Failed'),unsafe_allow_html=True)
score_col_old = value_com_col[1].columns(2)
score_col_new = value_com_col[2].columns(2)
for met,met_name in score_dict.items():
value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
if met != 'npscore':
score_col_old[0].markdown("<p style='text-align: center;'>%.2f</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
score_col_new[0].markdown("<p style='text-align: center;'>%.2f</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
old_passed = old_mol_metrics[met+'_passed']
new_passed = new_mol_metrics[met+'_passed']
score_col_old[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed else 'tomato','Good' if old_passed else 'Bad'),unsafe_allow_html=True)
score_col_new[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed else 'tomato','Good' if new_passed else 'Bad'),unsafe_allow_html=True)
else:
value_com_col[1].markdown("<p style='text-align: center;'>%.2f</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
value_com_col[2].markdown("<p style='text-align: center;'>%.2f</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
# for met,met_name in score_pass_dict.items():
# value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
# old_passed = old_mol_metrics[met]
# new_passed = new_mol_metrics[met]
# value_com_col[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed else 'tomato',old_passed),unsafe_allow_html=True)
# value_com_col[2].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed else 'tomato',new_passed),unsafe_allow_html=True)
for met,met_name in filter_dict.items():
# value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
old_passed = old_mol_metrics[met]
new_passed = new_mol_metrics[met]
with value_com_col[1].expander("%s :%s[%s]"%(met_name,'green' if old_passed['Disposed'] == 'Accepted' else 'red',old_passed['Disposed'])):
st.markdown('Matched name(s):')
# st.write(old_passed['MatchedNames'])
# st.markdown('Matched atom(s):')
if old_passed['MatchedNames'] != ['-']:
for idx,patt in enumerate(old_passed['MatchedAtoms']):
st.code(old_passed['MatchedNames'][idx])
# st.markdown(patt)
drawer = rdMolDraw2D.MolDraw2DSVG(200,200)
# drawer.drawOptions().fillHighlights = False
matches = sum(patt, ())
drawer.DrawMolecule(old_mol, highlightAtoms=matches)
drawer.FinishDrawing()
svg = drawer.GetDrawingText()
imgByteArr.seek(0)
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/svg+xml;base64,{base64.b64encode(svg.encode('utf-8')).decode('utf-8')}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
else:
st.markdown("No matched pattern")
# st.write(old_passed['MatchedAtoms'])
with value_com_col[2].expander("%s :%s[%s]"%(met_name,'green' if new_passed['Disposed'] == 'Accepted' else 'red',new_passed['Disposed'])):
st.markdown('Matched name(s):')
# st.write(new_passed['MatchedNames'])
# st.markdown('Matched atom(s):')
# st.write(new_passed['MatchedAtoms'])
if new_passed['MatchedNames'] != ['-']:
for idx,patt in enumerate(new_passed['MatchedAtoms']):
st.code(new_passed['MatchedNames'][idx])
drawer = rdMolDraw2D.MolDraw2DSVG(200,200)
# drawer.drawOptions().fillHighlights = False
matches = sum(patt, ())
drawer.DrawMolecule(new_mol, highlightAtoms=matches)
drawer.FinishDrawing()
svg = drawer.GetDrawingText()
imgByteArr.seek(0)
st.markdown("<p style='text-align: center;'>"+
f"<img src='data:image/svg+xml;base64,{base64.b64encode(svg.encode('utf-8')).decode('utf-8')}' class='img-fluid'>"+
"</p>", unsafe_allow_html=True)
else:
st.markdown("No matched pattern")
with sidebar_con.container():
set_step(3)
oam_sidebar(3)
else: optim_single_con.empty()
else: optim_single_con.empty()
def check_single(smiles):
# render_view()
st.session_state.smiles_selected = True
# st.session_state.smiles = smiles
# check_single_con = st.empty()
# optim = False
# with check_single_con.container():
if len(smiles) == 0:
st.session_state.checked_single = 'EnterError'
else:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
st.session_state.checked_single = 'MolError'
else:
st.session_state.canon_smiles = Chem.MolToSmiles(mol)
st.session_state.logp,st.session_state.sa,st.session_state.cycle,st.session_state.pen_p = penalized_logp_standard(mol)
moses_passed = mol_passes_filters_custom(mol)
st.session_state.checked_single = moses_passed
def optim_single(smiles,model,lr,sim_cutoff,n_iter):
new_smiles,sim = model.optimize(smiles, sim_cutoff=sim_cutoff, lr=lr, num_iter=n_iter)
return new_smiles,sim
def Optimize_a_batch():
st.session_state.sc_name = ['logp','sa','cycle','pen_logp']
st.session_state.new_sc_name = ['new_'+n for n in st.session_state.sc_name]
st.markdown("<h2 style='text-align: center;'>Optimize a batch</h2>",unsafe_allow_html=True)
with st.expander(':snowman: :blue[Instruction]'):
guide = """<h4 style='color:tomato;'>Steps to optimize a molucule</h4>
1. Upload a text file with SMILES string on each line.</br>
2. Check the SMILES strings to make sure that they are valid and pass MOSES filters.</br>
3. Select scores to calculate (penalized LogP included). Keep passed SMILES and calculate selected scores.</br>
4. Configure the settings to generate new molecules. The new molecules should have higher penalized LogP values.</br>
- Learning rate: How 'far' from each molecule that you want to search</br>
- Similarity cutoff: How 'similar' to each molecule that you want to search</br>
- Number of iterations: Number of generation trials per molecule</br>
5. <i>(Optional)</i> You can download the dataframe at any steps as *.csv file.</br>
<h4 style='color:darkturquoise;'>Annotation</h4>
<b>SMILES</b> - Simplified molecular-input line-entry system</br>
<b>LogP</b> - The log of the partition coefficient of a solute between octanol and water, at near infinite dilution</br>
<b>SA score</b> - Synthetic Accessibility Score (lower is better)</br>
<b>Cycle score</b> - A number of carbon rings of size larger than 6 (lower is better)</br>
<b>Penalized LogP</b> - Standardized score of <i>LogP - SA score - Cycle score</i></br>
<b>Similarity</b> - Molecular similarity is calculated via Morgan fingerprint of radius 2 with Tanimoto similarity</br>
"""
st.markdown(guide,unsafe_allow_html=True)
with st.sidebar:
sidebar_con = st.empty()
# sidebar_con.empty()
with sidebar_con.container():
set_step(0)
oab_sidebar(0)
oab_upl_container = st.empty()
if 'smiles_upload_change' not in st.session_state:
st.session_state.smiles_upload_change = False
if 'checked_batch' not in st.session_state:
st.session_state.checked_batch = False
if 'batch_left_checked' not in st.session_state:
st.session_state.batch_left_checked = False
if 'scores_calculated' not in st.session_state:
st.session_state.scores_calculated = False
if 'batch_optimized' not in st.session_state:
st.session_state.batch_optimized = False
with oab_upl_container.container():
st.session_state['smiles_file'] = st.file_uploader("Upload a text file with SMILES on each line :sparkles:",on_change=reset_oab_state)
if 'check_batch_butt' not in locals():
check_batch_butt = False
if st.session_state['smiles_file'] is not None:
if st.session_state.smiles_upload_change:
smiles_list = io.StringIO(st.session_state.smiles_file.getvalue().decode("utf-8"))
smiles_list = list(smiles_list.getvalue().rstrip().split('\n'))
st.markdown('Number of SMILES: '+str(len(smiles_list)))
if len(smiles_list) == 1:
st.markdown("<p style='text-align: center; color: red;'><b>Please use <i>Optimize a molecule</i> tab.</b></p>",unsafe_allow_html=True)
with sidebar_con.container():
set_step(0)
oab_sidebar(0)
else:
st.session_state['df'] = pd.DataFrame({'SMILES':smiles_list})
st.dataframe(st.session_state['df'],use_container_width=True)
check_batch_butt = st.button('Check SMILES')
else:
# if not st.session_state.checked_batch:
if st.session_state['smiles_file'] is not None:
st.dataframe(st.session_state['df'],use_container_width=True)
# st.button('Check SMILES',on_click=check_batch,args=[smiles_list],key='check_batch_butt')
if check_batch_butt:
if st.session_state.smiles_upload_change:
with sidebar_con.container():
set_step(1)
oab_sidebar(1)
check_batch(list(st.session_state['df'].SMILES))
st.session_state.smiles_upload_change = False
if 'calc_batch_butt' not in locals():
calc_batch_butt = False
check_batch_con = st.empty()
calc_batch_con = st.empty()
if st.session_state.checked_batch:
with check_batch_con.container():
passed_num = st.session_state['df'][st.session_state['df'].checked != 'invalid'].shape[0]
st.markdown('Number of passed SMILES: '+str(passed_num))
st.dataframe(st.session_state['df'].style.applymap(highlight_result, subset=pd.IndexSlice[:, ['checked']]),use_container_width=True)
if passed_num == 0:
st.markdown("<p style='text-align: center; color: red;'><b>The uploaded file contains no suitable SMILES string.</b></p>",unsafe_allow_html=True)
st.session_state.batch_left_checked = False
with sidebar_con.container():
set_step(0)
oab_sidebar(0)
else:
st.session_state.batch_left_checked = True
df = st.session_state['df']
download_df(df,0)
choose_score_con = st.empty()
if st.session_state.batch_left_checked:
with sidebar_con.container():
set_step(2)
oab_sidebar(2)
with choose_score_con.container():
with st.form("Choose score to calculate"):
st.markdown("<h4>Choose score(s) to calculate</h4>",unsafe_allow_html=True)
st.caption('Penalized LogP is always calculated.')
st.checkbox('LogP',key='logp_cal')
st.checkbox('SA score',key='sa_cal')
st.checkbox('Cycle score',key='cycle_cal')
calc_batch_butt = st.form_submit_button("Keep passed SMILES and calculate scores")
else:
choose_score_con.empty()
else:
check_batch_con.empty()
if 'optim_batch_butt' not in locals():
optim_batch_butt = False
# if 'calc_batch_butt' in st.session_state:
if calc_batch_butt and st.session_state.batch_left_checked:
# if not st.session_state.scores_calculated:
smiles_list = list(st.session_state['df'][st.session_state['df'].checked != 'invalid'].checked)
st.session_state.score_df = calc_scores(smiles_list)
st.session_state.batch_optimized = False
if st.session_state.scores_calculated:
calc_batch_con.empty()
with calc_batch_con.container():
st.dataframe(st.session_state.score_df,use_container_width=True)
score_df = st.session_state.score_df
download_df(score_df,1)
with sidebar_con.container():
set_step(3)
oab_sidebar(3)
with st.form(":gear: Settings"):
st.slider('Choose learning rate: ',0.0,5.0,0.4,key='lr_b')
st.slider('Choose similarity cutoff: ',0.0,1.0,0.4,key='sim_cutoff_b')
st.slider('Choose number of iterations: ',1,100,80,key='n_iter_b')
optim_batch_butt = st.form_submit_button("Optimize")
else:
calc_batch_con.empty()
optim_batch_con = st.empty()
ani_con = st.empty()
if optim_batch_butt and st.session_state.scores_calculated:
optim_batch_con.empty()
with sidebar_con.container():
set_step(4)
oab_sidebar(4)
with ani_con.container():
st.markdown('Operation in progress. Please wait...')
gen_results = []
render_animation()
st.markdown('Generating new SMILES string(s)...')
model = load_model()
for canon_smiles in stqdm(list(st.session_state.score_df.SMILES)):
gen_results.append(optim_single(canon_smiles,model,st.session_state.lr_b,st.session_state.sim_cutoff_b,st.session_state.n_iter_b))
st.markdown('Checking generated SMILES string(s) ...')
st.session_state.new_score_df = calc_scores_new(gen_results)
ani_con.empty()
if st.session_state.batch_optimized:
with sidebar_con.container():
set_step(5)
oab_sidebar(5)
with optim_batch_con.container():
new_score_df = st.session_state.new_score_df
# new_score_df.style.applymap(highlight_result, subset=pd.IndexSlice[:, ['new_smiles']])
st.markdown("<h3 style='text-align: center; color: mediumseagreen;'>RESULTS</h3>",unsafe_allow_html=True)
st.dataframe(new_score_df.style.applymap(highlight_result, subset=pd.IndexSlice[:, ['new_smiles']]),use_container_width=True)
download_df(new_score_df,3)
else:
optim_batch_con.empty()
def process_check_single(smiles):
mol = Chem.MolFromSmiles(smiles)
if (mol is not None) and (mol_passes_filters_custom(mol) == 'YES'):
return Chem.MolToSmiles(mol)
else:
return 'invalid'
def check_batch(smiles_list):
check = []
# check = Parallel(n_jobs=-1,backend='loky')(
# delayed(process_check_single)(smi) for smi in stqdm(smiles_list)
# )
for smi in stqdm(smiles_list):
mol = Chem.MolFromSmiles(smi)
if (mol is not None) and (mol_passes_filters_custom(mol) == 'YES'):
check.append(Chem.MolToSmiles(mol))
else:
check.append('invalid')
st.session_state['df'] = pd.concat([st.session_state['df'],pd.DataFrame({'checked':check})],axis=1)
st.session_state.checked_batch = True
# return check
def calc_scores(smiles_list):
score_df = pd.concat([st.session_state.df[st.session_state.df.checked != 'invalid'].SMILES,pd.DataFrame({'Checked_SMILES':smiles_list})],axis=1)
scores =[]
# scores = Parallel(n_jobs=-1,backend='loky')(
# delayed(penalized_logp_standard)(Chem.MolFromSmiles(smi)) for smi in stqdm(smiles_list)
# )
for smi in stqdm(smiles_list):
logp,sa,cycle,pen_logp = penalized_logp_standard(Chem.MolFromSmiles(smi))
scores+=[(logp,sa,cycle,pen_logp)]
s_df = pd.DataFrame(scores,columns=st.session_state.sc_name)
for n, checked in zip(st.session_state.sc_name,[st.session_state.logp_cal,st.session_state.sa_cal,st.session_state.cycle_cal,True]):
if checked:
score_df = pd.concat([score_df,s_df[n]],axis=1)
st.session_state.scores_calculated = True
return score_df
def process_calc_new_score(new_smiles,sim):
if new_smiles is None:
return ('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)
else:
new_mol = Chem.MolFromSmiles(new_smiles)
if new_mol is None:
return ('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)
else:
logp,sa,cycle,pen_logp = penalized_logp_standard(new_mol)
return (new_smiles,sim,logp,sa,cycle,pen_logp)
def calc_scores_new(result):
new_scores =[]
# new_scores = Parallel(n_jobs=-1,backend='loky')(
# delayed(process_calc_new_score)(new_smiles,sim) for new_smiles,sim in stqdm(result)
# )
for new_smiles,sim in stqdm(result):
if new_smiles is None:
new_scores+=[('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)]
else:
new_mol = Chem.MolFromSmiles(new_smiles)
if new_mol is None:
new_scores+=[('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)]
else:
logp,sa,cycle,pen_logp = penalized_logp_standard(new_mol)
new_scores+=[(new_smiles,sim,logp,sa,cycle,pen_logp)]
new_col = ['new_smiles','sim']+st.session_state.new_sc_name
s_df = pd.DataFrame(new_scores,columns=new_col)
new_score_df = st.session_state.score_df
for n, checked in zip(new_col,[True, True,st.session_state.logp_cal,st.session_state.sa_cal,st.session_state.cycle_cal,True]):
if checked:
new_score_df = pd.concat([new_score_df,s_df[n]],axis=1)
st.session_state.batch_optimized = True
return new_score_df
def highlight_result(value):
if value == 'invalid': color = 'tomato'
else: color = 'mediumseagreen'
return 'color: %s' % color
@st.cache_data(experimental_allow_widgets=True)
def download_df(df,id):
with st.expander(':arrow_down: Download this dataframe'):
st.markdown("<h4 style='color:tomato;'>Select column(s) to save:</h4>",unsafe_allow_html=True)
for col in df.columns:
st.checkbox(col,key=str(id)+'_col_'+str(col),value=True)
st.text_input('File name (.csv):','dataframe',key=str(id)+'_file_name')
ste.download_button('Download',df_to_file(df[[col for col in df.columns if st.session_state[str(id)+'_col_'+str(col)]]]),st.session_state[str(id)+'_file_name']+'.csv')
def reset_oam_state():
st.session_state.smiles_selected = False
st.session_state.checked_single = 'NO'
st.session_state.smiles_checked = False
st.session_state.single_optimized = False
st.session_state.compared = False
set_step(0)
def reset_oab_state():
st.session_state.smiles_upload_change = True
st.session_state.smiles_uploaded = False
st.session_state.checked_batch = False
st.session_state.batch_left_checked = False
st.session_state.scores_calculated = False
st.session_state.batch_optimized = False
set_step(0)
def rerun():
st.experimental_rerun()
def render_view():
# render_sidebar(st.session_state.current_view,st.session_state.current_step)
form_header()
form_body()
render_view()
|