File size: 57,986 Bytes
f9355e9
a3ea5d3
975be11
a3ea5d3
f9355e9
 
cb6b0b0
975be11
a3ea5d3
 
 
 
 
1cf9b3e
 
 
 
 
a3ea5d3
 
f9355e9
 
975be11
 
1cf9b3e
a3ea5d3
 
 
 
 
 
 
 
1cf9b3e
 
790267c
 
1cf9b3e
 
 
 
f9355e9
 
 
 
 
 
 
 
 
 
 
 
 
 
53e9a2b
975be11
 
 
 
53e9a2b
 
 
f9355e9
 
 
97ff519
f9355e9
975be11
f9355e9
 
 
 
30872a6
 
 
f9355e9
 
a3ea5d3
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4cbce
 
975be11
 
a3ea5d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975be11
 
 
 
 
 
 
1cf9b3e
 
 
 
 
 
975be11
1cf9b3e
a3ea5d3
f9355e9
 
 
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9355e9
8f4cbce
 
 
 
 
 
 
 
 
 
 
 
 
975be11
 
 
8f4cbce
 
04d1b54
8f4cbce
 
975be11
f9355e9
1cf9b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf9b3e
 
 
975be11
8f4cbce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf9b3e
 
 
 
 
 
 
 
 
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30872a6
 
 
 
 
975be11
 
 
 
 
 
53e9a2b
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30872a6
f9355e9
30872a6
 
 
 
1cf9b3e
 
 
 
 
 
30872a6
97ff519
 
 
 
 
30872a6
 
 
 
97ff519
30872a6
 
 
 
97ff519
 
 
 
30872a6
 
 
 
97ff519
30872a6
 
 
 
 
 
 
 
 
97ff519
30872a6
97ff519
30872a6
 
 
 
 
 
 
 
975be11
 
f9355e9
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ea5d3
975be11
 
 
 
 
 
8f4cbce
975be11
 
c274248
 
8f4cbce
 
 
 
1cf9b3e
 
8f4cbce
c274248
 
790267c
 
 
 
 
 
 
 
 
c274248
790267c
8f4cbce
c274248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4cbce
 
 
975be11
 
 
 
 
 
 
 
8f4cbce
975be11
 
 
 
 
8f4cbce
975be11
 
 
 
c274248
 
 
 
 
975be11
c274248
 
975be11
c274248
975be11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4cbce
975be11
 
 
 
 
 
 
8f4cbce
975be11
 
c274248
8f4cbce
 
 
 
 
975be11
 
 
 
 
 
1cf9b3e
8f4cbce
 
 
975be11
 
 
8f4cbce
 
 
 
 
 
c274248
8f4cbce
 
 
 
975be11
8f4cbce
975be11
a3ea5d3
f9355e9
8f4cbce
 
f9355e9
 
 
 
 
 
 
 
 
 
975be11
 
 
 
 
 
 
f9355e9
975be11
 
 
 
 
 
8f4cbce
f9355e9
 
8f4cbce
f9355e9
975be11
f9355e9
 
975be11
f9355e9
1cf9b3e
 
 
 
 
 
 
 
03728c1
 
1cf9b3e
03728c1
 
1cf9b3e
03728c1
 
1cf9b3e
03728c1
1cf9b3e
 
03728c1
1cf9b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe40bb4
1cf9b3e
 
03728c1
1cf9b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe40bb4
1cf9b3e
 
03728c1
1cf9b3e
 
 
 
 
 
 
 
8f4cbce
 
 
975be11
8f4cbce
975be11
c274248
975be11
 
 
c274248
8f4cbce
975be11
 
8f4cbce
 
 
 
 
 
 
975be11
c274248
8f4cbce
 
 
975be11
 
8f4cbce
975be11
 
8f4cbce
975be11
 
 
 
 
8f4cbce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c274248
8f4cbce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c274248
 
 
 
 
 
8f4cbce
 
c274248
 
 
8f4cbce
 
 
 
 
 
 
 
 
 
 
 
 
c274248
 
 
8f4cbce
 
 
 
 
 
 
 
 
 
c274248
 
 
 
 
 
 
 
 
 
 
8f4cbce
 
c274248
 
 
8f4cbce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975be11
 
 
 
 
8f4cbce
1cf9b3e
975be11
 
8f4cbce
 
 
 
 
 
 
 
 
975be11
 
 
 
 
 
f9355e9
 
975be11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
from pathlib import Path
import torch
# from st_on_hover_tabs import on_hover_tabs
import streamlit as st
st.set_page_config(layout="wide")

model_path = './model.iter-700000'

import sys, os
import rdkit
import rdkit.Chem as Chem
from rdkit.Chem.Draw import MolToImage
from rdkit.Chem import Descriptors
from rdkit.Chem import RDConfig
from rdkit.Chem.Draw import rdMolDraw2D
import os
import sys
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
import networkx as nx
from stqdm import stqdm
import base64, io
import pandas as pd
import streamlit_ext as ste
from metrics import Metrics

os.environ['KMP_DUPLICATE_LIB_OK']='True'

sys.path.append('%s/fast_jtnn/' % os.path.dirname(os.path.realpath(__file__)))
from mol_tree import Vocab, MolTree
from jtprop_vae import JTPropVAE
from molbloom import buy


what_new = '''
### Version 1.03
* Add more examples.
'''



css='''
[data-testid="metric-container"] {
    width: fit-content;
    margin: auto;
}

[data-testid="metric-container"] > div {
    width: fit-content;
    margin: auto;
}

[data-testid="metric-container"] label {
    width: fit-content;
    margin: auto;
}
[data-testid="stDataFrameResizable"] {
    width: fit-content;
    margin: auto;
}
[data-testid="stSidebar"]{
        max-width: 300px;
    }
'''

st.markdown(f'<style>{css}</style>',unsafe_allow_html=True)
st.markdown("<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css'>",unsafe_allow_html=True)

s_buff = io.StringIO()
def img_to_bytes(img_path):
    img_bytes = Path(img_path).read_bytes()
    encoded = base64.b64encode(img_bytes).decode()
    return encoded
def img_to_html(img_path,max_width=500):
    img_html = "<img src='data:image/png;base64,{}' class='img-fluid' style='max-width: {}px;'>".format(
      img_to_bytes(img_path), max_width
    )
    return img_html

_mcf = pd.read_csv('./mcf.csv')
_pains = pd.read_csv('./wehi_pains.csv',
                     names=['smarts', 'names'])
_mcf_filters = [Chem.MolFromSmarts(x) for x in
            _mcf['smarts'].values]
_pains_filters = [Chem.MolFromSmarts(x) for x in
            _pains['smarts'].values]

def mol_passes_filters_custom(mol,
                       allowed=None,
                       isomericSmiles=False):
    """
    Checks if mol
    * passes MCF and PAINS filters,
    * has only allowed atoms
    * is not charged
    """
    allowed = allowed or {'C', 'N', 'S', 'O', 'F', 'Cl', 'Br', 'H'}
    if mol is None:
        return 'NoMol'
    ring_info = mol.GetRingInfo()
    if ring_info.NumRings() != 0 and any(
            len(x) >= 8 for x in ring_info.AtomRings()
    ):
        return 'ManyRings'
    h_mol = Chem.AddHs(mol)
    if any(atom.GetFormalCharge() != 0 for atom in mol.GetAtoms()):
        return 'Charged'
    if any(atom.GetSymbol() not in allowed for atom in mol.GetAtoms()):
        return 'AtomNotAllowed'
    if any(h_mol.HasSubstructMatch(smarts) for smarts in _mcf_filters):
        return 'MCF'
    if any(h_mol.HasSubstructMatch(smarts) for smarts in _pains_filters):
        return 'PAINS'
    smiles = Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles)
    if smiles is None or len(smiles) == 0:
        return 'Isomeric'
    if Chem.MolFromSmiles(smiles) is None:
        return 'Isomeric'
    if not check_vocab(Chem.MolToSmiles(mol)):
        return 'NoVocab'
    return 'YES'

def penalized_logp_standard(mol):

    logP_mean = 2.4399606244103639873799239
    logP_std = 0.9293197802518905481505840
    SA_mean = -2.4485512208785431553792478
    SA_std = 0.4603110476923852334429910
    cycle_mean = -0.0307270378623088931402396
    cycle_std = 0.2163675785228087178335699

    log_p = Descriptors.MolLogP(mol)
    SA = -sascorer.calculateScore(mol)

    # cycle score
    cycle_list = nx.cycle_basis(nx.Graph(Chem.rdmolops.GetAdjacencyMatrix(mol)))
    if len(cycle_list) == 0:
        cycle_length = 0
    else:
        cycle_length = max([len(j) for j in cycle_list])
    if cycle_length <= 6:
        cycle_length = 0
    else:
        cycle_length = cycle_length - 6
    cycle_score = -cycle_length
    # print(logP_mean)

    standardized_log_p = (log_p - logP_mean) / logP_std
    standardized_SA = (SA - SA_mean) / SA_std
    standardized_cycle = (cycle_score - cycle_mean) / cycle_std
    return log_p,SA,cycle_score,standardized_log_p + standardized_SA + standardized_cycle

def df_to_file(df):
    s_buff.seek(0)
    df.to_csv(s_buff)
    return s_buff.getvalue().encode()

# def download_df(df,id):
#     with st.expander(':arrow_down: Download this dataframe'):
#         st.markdown("<h4 style='color:tomato;'>Select column(s) to save:</h4>",unsafe_allow_html=True)
#         for col in df.columns:
#             st.checkbox(col,key=str(id)+'_col_'+str(col))
#         st.text_input('File name (.csv):','dataframe',key=str(id)+'_file_name')
        
#         ste.download_button('Download',df_to_file(df[[col for col in df.columns if st.session_state[str(id)+'_col_'+str(col)]]]),st.session_state[str(id)+'_file_name']+'.csv')

lg = rdkit.RDLogger.logger() 
lg.setLevel(rdkit.RDLogger.CRITICAL)

    
if 'current_view' not in st.session_state:
    st.session_state['current_view'] = 0
    
if 'current_step' not in st.session_state:
    st.session_state['current_step'] = 0
    
def set_page_view(id):
    st.session_state['current_view'] = id
    
def get_page_view():
    return st.session_state['current_view']
    
def set_step(id):
    st.session_state['current_step'] = id
    
def get_step():
    return st.session_state['current_step']


vocab = [x.strip("\r\n ") for x in open('./vocab.txt')] 
vocab_set = set(vocab)
vocab = Vocab(vocab)

def check_vocab(smiles):
    cset = set()
    mol = MolTree(smiles)
    for c in mol.nodes:
        cset.add(c.smiles)
    return cset.issubset(vocab_set)


@st.cache_resource
def load_model():
    model = JTPropVAE(vocab, 450, 56, 20, 3)
    if torch.cuda.is_available():
        model.load_state_dict(torch.load(model_path))
        model.to('cuda')
    else:
        model.load_state_dict(torch.load(model_path,map_location=torch.device('cpu')))
    return model

descrip_dict ={
    'logp':'LogP',
    'mw':'MW',
    'tpsa':'TPSA',
    'n_hba':'nHA',
    'n_hbd':'nHD'
}
rule_dict = {
    'ro5':'RO5',
    'pfizer_rule_passed':'PFIZER Rule',
    'gsk_rule_passed':'GSK Rule',
    'goldentriangle_rule':'GOLDENTRIANGLE Rule'
}
score_dict ={
    'qed':'QED',
    'sascore' : 'SA score',
    'fsp3' : 'Fsp3',
    'mce18' : 'MCE-18',
    'npscore' : 'NP score'
}
score_pass_dict = {
    'qed_passed' : 'QED Passed',
    'sascore_passed' : 'SA Passed',
    'fsp3_passed' : 'Fsp3 Passed',
    'mce18_passed' : 'MCE-18 Passed'
}
filter_dict = {
    'pains_filter' : 'PAINS Filter',
    'alarm_nmr_filter' : 'ALARM NMR Filter',
    'bms_filter' : 'BMS Filter',
    'chelator_filter' : 'Chelator Filter'
}

from streamlit_lottie import st_lottie
import requests
    
def render_animation():
    animation_response = requests.get('https://assets1.lottiefiles.com/packages/lf20_vykpwt8b.json')
    animation_json = dict()
    
    if animation_response.status_code == 200:
        animation_json = animation_response.json()
    else:
        print("Error in the URL")
    return st_lottie(animation_json,height=200,width=300)

def oam_sidebar(step):
    st.title('**Optimize a molecule**')
    prog_bar = st.progress(0)
    # cur_step = get_step()
    if step == 0: prog_bar.progress(0)
    if step == 1: prog_bar.progress(33)
    if step == 2: prog_bar.progress(67)
    if step == 3: prog_bar.progress(100)
    st.markdown('\n')
    
    # st.markdown(get_step())
    color_ls = colorize_step(4,step)
    
    st.markdown("<h4 style='color: "+color_ls[0]+"'>Choose a molecule</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[1]+"'>Choose settings</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[2]+"'>Optimizing a molecule</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[3]+"'>Finished</h4>",unsafe_allow_html=True)
    st.markdown("""---""")
    with st.expander("# **:green[What's new?]**"):
        st.markdown(what_new)

def oab_sidebar(step):
    st.title('**Optimize a batch**')
    prog_bar = st.progress(0)
    # cur_step = get_step()
    if step == 0: prog_bar.progress(0)
    if step == 1: prog_bar.progress(20)
    if step == 2: prog_bar.progress(40)
    if step == 3: prog_bar.progress(60)
    if step == 4: prog_bar.progress(80)
    if step == 5: prog_bar.progress(100)
    st.markdown('\n')
    
    # st.markdown(get_step())
    color_ls = colorize_step(6,step)
    
    st.markdown("<h4 style='color: "+color_ls[0]+"'>Upload SMILES file</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[1]+"'>Checking SMILES</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[2]+"'>Select scores</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[3]+"'>Choose settings</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[4]+"'>Optimizing a batch</h4>",unsafe_allow_html=True)
    st.markdown('|')
    st.markdown("<h4 style='color: "+color_ls[5]+"'>Finished</h4>",unsafe_allow_html=True)
    st.markdown("""---""")
    with st.expander("# **:green[What's new?]**"):
        st.markdown(what_new)
    
def ab_sidebar():
    st.title('**About**')
    st.markdown("""---""")
    with st.expander("# **:green[What's new?]**"):
        st.markdown(what_new)
# @st.cache_data(experimental_allow_widgets=True)

# if 'sidebar_con' not in st.session_state:
#     sidebar_con = st.empty()
# def render_sidebar(page,step):
#     sidebar_con.empty()
#     with sidebar_con.container():
#         if page == 0:
#             with st.sidebar():
#                 oam_sidebar(step)

def colorize_step(n_step,cur_step):
    color_list = ['grey']*n_step
    for i in range(cur_step):
        color_list[i] = 'mediumseagreen'
    color_list[cur_step] = 'tomato'
    if cur_step == n_step-1:
        color_list[cur_step] = 'mediumseagreen'
    return color_list

def form_header():
    st.markdown("<h1 style='padding: 25px;text-align: center;color: white;background-color: tomato;'>Molecular Optimization using Junction Tree Variational Autoencoder</h1>",unsafe_allow_html=True)
    st.markdown("<h4 style='padding: 10px;text-align: center;color: white;background-color: mediumseagreen;'>Gia-Bao Truong</h4>",unsafe_allow_html=True)
    with st.expander(':star2: About the model'):
        st.markdown("<p style='text-align: center;'>Based on Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)</p>",unsafe_allow_html=True)
        st.markdown("<p style='text-align: center;'>Wengong Jin, Regina Barzilay, Tommi Jaakkola</p>",unsafe_allow_html=True)

    # determines button color which should be red when user is on that given step
    oam_type = 'primary' if st.session_state['current_view'] == 0 else 'secondary'
    oab_type = 'primary' if st.session_state['current_view'] == 1 else 'secondary'
    ab_type = 'primary' if st.session_state['current_view'] == 2 else 'secondary'

    step_cols = st.columns([.2,.85,.85,.85,.2])    
    step_cols[1].button('Optimize a molecule',on_click=set_page_view,args=[0],type=oam_type,use_container_width=True)
    step_cols[2].button('Optimize a batch',on_click=set_page_view,args=[1],type=oab_type,use_container_width=True)        
    step_cols[3].button('About',on_click=set_page_view,args=[2],type=ab_type,use_container_width=True) 
    st.empty()
    
def form_body():
    body_container = st.empty()
    ###### Optimize a molecule ######
    if st.session_state['current_view'] == 0:
        body_container.empty()
        with body_container.container():
            Optimize_a_molecule()
    ###### Optimize a batch ######
    if st.session_state['current_view'] == 1: 
        body_container.empty()
        with body_container.container():
            Optimize_a_batch()
    ###### About ######
    if st.session_state['current_view'] == 2:
        body_container.empty()
        with body_container.container():
            About()
        
def About():
    descrip_model = '''
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
'''
    img_caption = '''
Figure 3. Overview of our method: A molecular graph G is first decomposed into its junction tree TG, where each colored node in the tree represents a substructure in the molecule. We then encode both the tree and graph into their latent embeddings zT and zG. To decode the molecule, we first reconstruct junction tree from zT , and then assemble nodes in the tree back to the original molecule.'''
    
    with st.sidebar:
        sidebar_con = st.empty()
    # sidebar_con.empty()
    with sidebar_con.container():
            ab_sidebar()
            
    with st.expander(':four_leaf_clover: About the author',expanded=True):
        st.markdown('')
        st.markdown("<h3 style='text-align:center;'>Gia-Bao Truong</h3>",unsafe_allow_html=True)
        st.markdown("""<p style='text-align:center;'><i class='fa-brands fa-github'></i> <a href="https://github.com/buchijw">Github</a></p>""",unsafe_allow_html=True)
        st.markdown("<p style='text-align:center;'>🤗 <a href='https://huggingface.co/buchijw'>Hugging Face</a></p>",unsafe_allow_html=True)
        st.markdown("<h3 style='color:tomato; text-align:center;'>Student at</h3>",unsafe_allow_html=True)
        st.markdown("<p style='text-align:center;'>"+
                        img_to_html('img/about1.png',64)+' '+img_to_html('img/about2.png',64)+
                        "</p>", unsafe_allow_html=True)
        st.markdown("<h5 style='text-align:center;'>Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City</h5>",unsafe_allow_html=True)
        st.markdown("<h3 style='color:tomato; text-align:center;'>Team</h3>",unsafe_allow_html=True)
        st.markdown("<p style='text-align:center;'>"+
                        img_to_html('img/about3.png',64)+
                        "</p>", unsafe_allow_html=True)
        st.markdown("<h5 style='text-align:center;'>MedAI</h5>",unsafe_allow_html=True)
        st.markdown("<h3 style='color:tomato; text-align:center;'>Team Leader</h3>",unsafe_allow_html=True)
        st.markdown("<h5 style='text-align:center;'>Tieu-Long Phan</h5>",unsafe_allow_html=True)
        st.markdown("<h6 style='text-align:center;'>University of Medicine and Pharmacy at Ho Chi Minh City</h6>",unsafe_allow_html=True)
        st.markdown("<p style='text-align:center;'><i class='fa-brands fa-github'></i> <a href='https://tieulongphan.github.io'>Github</a></p>",unsafe_allow_html=True)
        
    
    with st.expander(':star2: About the model',expanded=True):
        st.markdown("Based on Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)",unsafe_allow_html=True)
        st.markdown("<h3 style='color:tomato;'>Citing</h3>",unsafe_allow_html=True)
        st.markdown("Paper: [https://arxiv.org/abs/1802.04364](https://arxiv.org/abs/1802.04364)")
        st.code('''@misc{jin2019junction,
                        title={Junction Tree Variational Autoencoder for Molecular Graph Generation}, 
                        author={Wengong Jin and Regina Barzilay and Tommi Jaakkola},
                        year={2019},
                        eprint={1802.04364},
                        archivePrefix={arXiv},
                        primaryClass={cs.LG}
                        }''')
        st.markdown("<h3 style='color:tomato;'>Author</h3>",unsafe_allow_html=True)
        st.markdown("Wengong Jin, Regina Barzilay, Tommi Jaakkola",unsafe_allow_html=True)
        st.markdown("<h3 style='color:tomato;'>Abstract</h3>",unsafe_allow_html=True)
        st.markdown(descrip_model)
        ab = st.columns([1,10,1])
        ab[1].markdown("<p style='text-align: center;'>"+
                        img_to_html('img/model_fig.png')+
                        "</p>", unsafe_allow_html=True)
        ab[1].markdown("<p style='text-align: center;'>"+
                        img_caption+
                        "</p>",unsafe_allow_html=True)
    
def Optimize_a_molecule():
    st.markdown("<h2 style='text-align: center;'>Optimize a molecule</h2>",unsafe_allow_html=True)
    with st.expander(':snowman: :blue[Instruction]'):
        guide = """<h4 style='color:tomato;'>Steps to optimize a molucule</h4>
        1. Select from examples, or manually enter a valid SMILES string of a molecule.</br>
        2. Configure the settings to generate a new molecule. The new molecule should have a higher penalized LogP value.</br>
            - Learning rate: How 'far' from the molecule that you want to search.</br>
            - Similarity cutoff: How 'similar' to the molecule that you want to search.</br>
            - Number of iterations: Number of generation trials.</br>
        <h4 style='color:darkturquoise;'>Annotation</h4>
        <b>SMILES</b> - Simplified molecular-input line-entry system</br>
        <b>LogP</b> - The log of the partition coefficient of a solute between octanol and water, at near infinite dilution</br>
        <b>SA score</b> - Synthetic Accessibility Score (lower is better)</br>
        <b>Cycle score</b> - A number of carbon rings of size larger than 6 (lower is better)</br>
        <b>Penalized LogP</b> - Standardized score of <i>LogP - SA score - Cycle score</i></br>
        <b>Similarity</b> - Molecular similarity is calculated via Morgan fingerprint of radius 2 with Tanimoto similarity</br>
        """
        st.markdown(guide,unsafe_allow_html=True)
        
    with st.sidebar:
        sidebar_con = st.empty()
    # sidebar_con.empty()
    with sidebar_con.container():
            set_step(0)
            oam_sidebar(0)
    # oab_sel_container = st.empty()
    if 'checked_single' not in st.session_state:
        st.session_state.checked_single = 'NO'
    # if 'mode' not in st.session_state:
    #     st.session_state.mode = 0
    if 'single_optimized' not in st.session_state:
        st.session_state.single_optimized = False
    if 'smiles_checked' not in st.session_state:
        st.session_state.smiles_checked = False
    if 'compared' not in st.session_state:
        st.session_state.compared = False
    # with oab_sel_container.container():
    sample_mode = {
        '-':'',
        'Sorafenib':Chem.CanonSmiles('CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F'),
        'Pazopanib':Chem.CanonSmiles('CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N'),
        'Sunitinib':Chem.CanonSmiles('CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C'),
        'Cabozantinib':Chem.CanonSmiles('COC1=CC2=C(C=CN=C2C=C1OC)OC3=CC=C(C=C3)NC(=O)C4(CC4)C(=O)NC5=CC=C(C=C5)F'),
        'Axitinib':Chem.CanonSmiles('CNC(=O)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)C=CC4=CC=CC=N4'),
        'Lenvatinib':Chem.CanonSmiles('COC1=CC2=NC=CC(=C2C=C1C(=O)N)OC3=CC(=C(C=C3)NC(=O)NC4CC4)Cl'),
        'Regorafenib':Chem.CanonSmiles('CNC(=O)C1=NC=CC(=C1)OC2=CC(=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F)F'),
        'Vandetanib':Chem.CanonSmiles('CN1CCC(CC1)COC2=C(C=C3C(=C2)N=CN=C3NC4=C(C=C(C=C4)Br)F)OC'),
        'Tivozanib': Chem.CanonSmiles('CC1=CC(=NO1)NC(=O)NC2=C(C=C(C=C2)OC3=C4C=C(C(=CC4=NC=C3)OC)OC)Cl')
        }
    ls_opt = list(sample_mode.keys())
    oam_sel_col = st.columns([3,7])
    with st.form('sel_smiles'):
        mode = oam_sel_col[0].selectbox("Select an example",options=ls_opt,on_change=reset_oam_state)
        smiles = oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):',sample_mode[mode],max_chars=200,
                                  disabled=(mode != '-'))
        # if mode == '-':
        #     st.session_state.smiles = oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):',max_chars=200,key='opt_0')
        #     # st.session_state.mode = 0
        # elif mode == 'Sorafenib':
        #     st.session_state.smiles = 'CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F'
        #     oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F',max_chars=200,disabled=True,key='opt_1')
        #     # st.session_state.mode = 1
        # elif mode == 'Pazopanib':
        #     st.session_state.smiles = 'CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N'
        #     oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CC1=C(C=C(C=C1)NC2=NC=CC(=N2)N(C)C3=CC4=NN(C(=C4C=C3)C)C)S(=O)(=O)N',max_chars=200,disabled=True,key='opt_2')
        #     # st.session_state.mode = 2
        # elif mode == 'Sunitinib':
        #     st.session_state.smiles = 'CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C'
        #     oam_sel_col[1].text_input('Enter a SMILES string (max 200 chars):','CCN(CC)CCNC(=O)C1=C(NC(=C1C)C=C2C3=C(C=CC(=C3)F)NC2=O)C',max_chars=200,disabled=True,key='opt_3')
        #     # st.session_state.mode = 3
        check_single_butt = st.form_submit_button('Check SMILES',use_container_width=True)
    # st.session_state.smiles = st.session_state['opt_'+str(ls_opt.index(st.session_state.mode))]
    if check_single_butt:
        st.session_state.mode = mode
        st.session_state.smiles = smiles
        check_single(st.session_state.smiles)
    
    if 'optim_single_butt' not in locals():
        optim_single_butt = False
    
    check_single_con = st.empty()
    if 'smiles_selected' in st.session_state:
        if st.session_state.smiles_selected:
            with check_single_con.container():
                if 'checked_single' in st.session_state:
                    if st.session_state.checked_single == 'EnterError':
                        st.markdown("<p style='text-align: center; color: red;'><b>Please enter a SMILES string.</b></p>",unsafe_allow_html=True)
                        # sidebar_con.empty()
                        with sidebar_con.container():
                                set_step(0)
                                oam_sidebar(0)
                    elif st.session_state.checked_single == 'MolError':
                        st.markdown("<p style='text-align: center; color: red;'><b>SMILES is invalid. Please enter a valid SMILES.</b></p>",unsafe_allow_html=True)
                        # sidebar_con.empty()
                        with sidebar_con.container():
                                set_step(0)
                                oam_sidebar(0)
                    elif st.session_state.checked_single == 'YES':
                        if st.session_state.mode != '-':
                            st.markdown(f"<h4 style='color:mediumseagreen;'>Using example: <b>{st.session_state.mode}</b></h4>",unsafe_allow_html=True)
                        else:
                            st.markdown(f"<h4>Selected SMILES</h4>",unsafe_allow_html=True)
                            st.code(st.session_state.smiles)
                        st.markdown("<b>Canonicalized SMILES</b>",unsafe_allow_html=True)
                        st.session_state.canon_smiles = Chem.CanonSmiles(st.session_state.smiles)
                        st.code(st.session_state.canon_smiles)
                        st.markdown("<p style='text-align: center; color: mediumseagreen'>MOSES filters passed successfully.</p>",unsafe_allow_html=True)
                        mol = Chem.MolFromSmiles(st.session_state.canon_smiles)
                        imgByteArr = io.BytesIO()
                        MolToImage(mol,size=(400,400)).save(imgByteArr,format='PNG')
                        st.markdown("<p style='text-align: center;'>"+
                                f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
                                "</p>", unsafe_allow_html=True)
                        # st.image(MolToImage(mol,size=(300,300)))
                        col1, col2, col3, col4 = st.columns(4)
                        col1.metric('LogP', '%.5f' % (st.session_state.logp))
                        col2.metric('SA score', '%.5f' % (-st.session_state.sa))
                        col3.metric('Cycle score', '%d' % (-st.session_state.cycle))
                        col4.metric('Penalized LogP', '%.5f' % (st.session_state.pen_p))
                        
                        st.session_state.smiles_checked = True
                        # render_sidebar()
                        # col1, col2, col3 = st.columns(3)
                        # sidebar_con.empty()
                        with sidebar_con.container():
                                set_step(1)
                                oam_sidebar(1)
                        with st.form(":gear: Settings"):
                                st.slider('Choose learning rate: ',0.0,5.0,0.4,key='lr_s')
                                st.slider('Choose similarity cutoff: ',0.0,1.0,0.4,key='sim_cutoff_s')
                                st.slider('Choose number of iterations: ',1,100,80,key='n_iter_s')
                                optim_single_butt = st.form_submit_button("Optimize")
                    else:
                        st.markdown("<b>Canonicalized SMILES</b>",unsafe_allow_html=True)
                        st.code(st.session_state.canon_smiles)
                        if st.session_state.checked_single == 'NoVocab':
                            st.markdown("<p style='text-align: center; color: red;'><b>The molecule contains unavailable vocab(s). Please use another molecule.</b></p>",unsafe_allow_html=True)
                        else:
                            st.markdown("<p style='text-align: center; color: red;'><b>MOSES filters passed failed. Please use another molecule.</b></p>",unsafe_allow_html=True)
                        # sidebar_con.empty()
                        with sidebar_con.container():
                                set_step(0)
                                oam_sidebar(0)
        else: check_single_con.empty()
    
    optim_single_con = st.empty()
    compare_single_con = st.empty()
    if st.session_state.smiles_checked:
        if optim_single_butt:
            # sidebar_con.empty()
            with sidebar_con.container():
                    set_step(2)
                    oam_sidebar(2)
            
            ani_con = st.empty()
            with ani_con.container():
                st.markdown('Operation in progress. Please wait...')
                render_animation()
                model = load_model()
                st.session_state.new_smiles,st.session_state.sim = optim_single(st.session_state.canon_smiles,model,st.session_state.lr_s,st.session_state.sim_cutoff_s,st.session_state.n_iter_s)
                st.session_state.single_optimized = True
            ani_con.empty()
                # sidebar_con.empty()
        if st.session_state.single_optimized:
            with optim_single_con.container():
                if st.session_state.new_smiles is None:
                    st.markdown("<h4 style='text-align: center; color: red;'>Cannot optimize! Please choose another setting.</h4>",unsafe_allow_html=True)
                else:
                    st.markdown("<b style='text-align: center;'>New SMILES</b>",unsafe_allow_html=True)
                    st.code(st.session_state.new_smiles)
                    new_mol = Chem.MolFromSmiles(st.session_state.new_smiles)
                    if new_mol is None:
                        st.markdown("<p style='text-align: center; color: red;'>New SMILES is invalid! Please choose another setting.</p>",unsafe_allow_html=True)
                        # st.write('New SMILES is invalid.')
                    else:
                        # st.write('New SMILES molecule:')
                        imgByteArr = io.BytesIO()
                        MolToImage(new_mol,size=(400,400)).save(imgByteArr,format='PNG')
                        st.markdown("<p style='text-align: center;'>"+
                                    f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
                                    "</p>", unsafe_allow_html=True)
                        
                        new_moses_passed = mol_passes_filters_custom(new_mol)
                        if new_moses_passed=='YES':
                            st.markdown("<p style='text-align: center; color: mediumseagreen'>MOSES filters passed successfully.</p>",unsafe_allow_html=True)
                        else:
                            st.markdown("<p style='text-align: center; color: red;'><b>MOSES filters passed failed.</b></p>",unsafe_allow_html=True)
                        st.session_state.new_logp,st.session_state.new_sa,st.session_state.new_cycle,st.session_state.new_pen_p = penalized_logp_standard(new_mol)
                    # st.write('New penalized logP score: %.5f' % (new_score))
                        col12, col22, col32, col42 = st.columns(4)
                        col12.metric('LogP', '%.5f' % (st.session_state.new_logp),'%.5f'%(st.session_state.new_logp-st.session_state.logp))
                        col22.metric('SA score', '%.5f' % (-st.session_state.new_sa),'%.5f'%(-st.session_state.new_sa+st.session_state.sa),delta_color='inverse')
                        col32.metric('Cycle score', '%d' % (-st.session_state.new_cycle),'%d'%(-st.session_state.new_cycle+st.session_state.cycle),delta_color='inverse')
                        col42.metric('Penalized LogP', '%.5f' % (st.session_state.new_pen_p),'%.5f'%(st.session_state.new_pen_p-st.session_state.pen_p))
                        # st.metric('New penalized logP score','%.5f' % (new_score), '%.5f'%(new_score-score))
                        st.metric('Similarity','%.5f' % (st.session_state.sim))
                        # st.write('Caching ZINC20 if necessary...')
                        with st.spinner("Caching ZINC20 if necessary..."):
                            if buy(st.session_state.new_smiles, catalog='zinc20',canonicalize=True):
                                st.write('This molecule exists.')
                                st.markdown("<h3 style='text-align: center; color: darkturquoise;'><b>This molecule exists.</h3>",unsafe_allow_html=True)
                            else:
                                # st.write('THIS MOLECULE DOES NOT EXIST!')
                                st.markdown("<h3 style='text-align: center; color: mediumseagreen;'>THIS MOLECULE DOES NOT EXIST!</h3>",unsafe_allow_html=True)
                        st.markdown("<p style='text-align: center; color: grey;'>Checked using molbloom</p>",unsafe_allow_html=True)
                        if st.button('Compare',use_container_width=True):
                            st.session_state.compared = True
                        if st.session_state.compared:
                                compare_single_con.empty()
                                with compare_single_con.container():
                                    com_col = st.columns(3)
                                    com_col[1].markdown("<h4 style='text-align: center;'>Original</h4>",unsafe_allow_html=True)
                                    com_col[2].markdown("<h4 style='text-align: center;'>New</h4>",unsafe_allow_html=True)
                                    old_mol = Chem.MolFromSmiles(st.session_state.canon_smiles)
                                    new_mol = Chem.MolFromSmiles(st.session_state.new_smiles)
                                    imgByteArr.seek(0)
                                    MolToImage(old_mol,size=(200,200)).save(imgByteArr,format='PNG')
                                    old_mol_base64 = base64.b64encode(imgByteArr.getvalue()).decode()
                                    imgByteArr.seek(0)
                                    MolToImage(new_mol,size=(200,200)).save(imgByteArr,format='PNG')
                                    new_mol_base64 = base64.b64encode(imgByteArr.getvalue()).decode()
                                    com_col[1].markdown("<p style='text-align: center;'>"+
                                        f"<img src='data:image/png;base64,{old_mol_base64}' class='img-fluid'>"+
                                        "</p>", unsafe_allow_html=True)
                                    com_col[2].markdown("<p style='text-align: center;'>"+
                                        f"<img src='data:image/png;base64,{new_mol_base64}' class='img-fluid'>"+
                                        "</p>", unsafe_allow_html=True)
                                    old_mol_metrics = Metrics(st.session_state.canon_smiles).calculate_all()
                                    new_mol_metrics = Metrics(st.session_state.new_smiles).calculate_all()
                                    value_com_col = st.columns(3)
                                    for met,met_name in descrip_dict.items():
                                        value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
                                        if met not in ['n_hba','n_hbd']:
                                            value_com_col[1].markdown("<p style='text-align: center;'>%.2f</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
                                            value_com_col[2].markdown("<p style='text-align: center;'>%.2f</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
                                        else:
                                            value_com_col[1].markdown("<p style='text-align: center;'>%d</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
                                            value_com_col[2].markdown("<p style='text-align: center;'>%d</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
                                    for met,met_name in rule_dict.items():
                                        value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
                                        old_passed = old_mol_metrics[met]
                                        new_passed = new_mol_metrics[met]
                                        if met == 'ro5':
                                            value_com_col[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed > 3 else 'tomato',old_passed),unsafe_allow_html=True)
                                            value_com_col[2].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed > 3 else 'tomato',new_passed),unsafe_allow_html=True)
                                        else:
                                            value_com_col[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed else 'tomato','Passed' if old_passed else 'Failed'),unsafe_allow_html=True)
                                            value_com_col[2].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed else 'tomato','Passed' if new_passed else 'Failed'),unsafe_allow_html=True)
                                    score_col_old = value_com_col[1].columns(2)
                                    score_col_new = value_com_col[2].columns(2)
                                    for met,met_name in score_dict.items():
                                        value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
                                        if met != 'npscore':
                                            score_col_old[0].markdown("<p style='text-align: center;'>%.2f</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
                                            score_col_new[0].markdown("<p style='text-align: center;'>%.2f</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
                                            old_passed = old_mol_metrics[met+'_passed']
                                            new_passed = new_mol_metrics[met+'_passed']
                                            score_col_old[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed else 'tomato','Good' if old_passed else 'Bad'),unsafe_allow_html=True)
                                            score_col_new[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed else 'tomato','Good' if new_passed else 'Bad'),unsafe_allow_html=True)
                                        else:
                                            value_com_col[1].markdown("<p style='text-align: center;'>%.2f</p>"%(old_mol_metrics[met]),unsafe_allow_html=True)
                                            value_com_col[2].markdown("<p style='text-align: center;'>%.2f</p>"%(new_mol_metrics[met]),unsafe_allow_html=True)
                                    # for met,met_name in score_pass_dict.items():
                                    #     value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
                                    #     old_passed = old_mol_metrics[met]
                                    #     new_passed = new_mol_metrics[met]
                                    #     value_com_col[1].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if old_passed else 'tomato',old_passed),unsafe_allow_html=True)
                                    #     value_com_col[2].markdown("<p style='text-align: center; color: %s;'>%s</p>"%('mediumseagreen' if new_passed else 'tomato',new_passed),unsafe_allow_html=True)
                                    
                                    for met,met_name in filter_dict.items():
                                        # value_com_col[0].markdown(f"<p style='text-align: center;'>{met_name}</p>",unsafe_allow_html=True)
                                        old_passed = old_mol_metrics[met]
                                        new_passed = new_mol_metrics[met]
                                        with value_com_col[1].expander("%s :%s[%s]"%(met_name,'green' if old_passed['Disposed'] == 'Accepted' else 'red',old_passed['Disposed'])):
                                            st.markdown('Matched name(s):')
                                            # st.write(old_passed['MatchedNames'])
                                            # st.markdown('Matched atom(s):')
                                            if old_passed['MatchedNames'] != ['-']:
                                                for idx,patt in enumerate(old_passed['MatchedAtoms']):
                                                    st.code(old_passed['MatchedNames'][idx])
                                                    # st.markdown(patt)
                                                    drawer = rdMolDraw2D.MolDraw2DSVG(200,200)
                                                    # drawer.drawOptions().fillHighlights = False
                                                    matches = sum(patt, ())
                                                    drawer.DrawMolecule(old_mol, highlightAtoms=matches)
                                                    drawer.FinishDrawing()
                                                    svg = drawer.GetDrawingText()
                                                    imgByteArr.seek(0)
                                                    st.markdown("<p style='text-align: center;'>"+
                                                            f"<img src='data:image/svg+xml;base64,{base64.b64encode(svg.encode('utf-8')).decode('utf-8')}' class='img-fluid'>"+
                                                            "</p>", unsafe_allow_html=True)
                                            else:
                                                st.markdown("No matched pattern")
                                            # st.write(old_passed['MatchedAtoms'])
                                        with value_com_col[2].expander("%s :%s[%s]"%(met_name,'green' if new_passed['Disposed'] == 'Accepted' else 'red',new_passed['Disposed'])):
                                            st.markdown('Matched name(s):')
                                            # st.write(new_passed['MatchedNames'])
                                            # st.markdown('Matched atom(s):')
                                            # st.write(new_passed['MatchedAtoms'])
                                            if new_passed['MatchedNames'] != ['-']:
                                                for idx,patt in enumerate(new_passed['MatchedAtoms']):
                                                    st.code(new_passed['MatchedNames'][idx])
                                                    drawer = rdMolDraw2D.MolDraw2DSVG(200,200)
                                                    # drawer.drawOptions().fillHighlights = False
                                                    matches = sum(patt, ())
                                                    drawer.DrawMolecule(new_mol, highlightAtoms=matches)
                                                    drawer.FinishDrawing()
                                                    svg = drawer.GetDrawingText()
                                                    imgByteArr.seek(0)
                                                    st.markdown("<p style='text-align: center;'>"+
                                                            f"<img src='data:image/svg+xml;base64,{base64.b64encode(svg.encode('utf-8')).decode('utf-8')}' class='img-fluid'>"+
                                                            "</p>", unsafe_allow_html=True)
                                            else:
                                                st.markdown("No matched pattern")
            with sidebar_con.container():
                    set_step(3)
                    oam_sidebar(3)
        else: optim_single_con.empty()
    else: optim_single_con.empty()


def check_single(smiles):
    # render_view()
    st.session_state.smiles_selected = True
    # st.session_state.smiles = smiles
    # check_single_con = st.empty()
    
    # optim = False
    # with check_single_con.container():
    if len(smiles) == 0:
        st.session_state.checked_single = 'EnterError'
    else:
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            st.session_state.checked_single = 'MolError'
        else:
            st.session_state.canon_smiles = Chem.MolToSmiles(mol)
            st.session_state.logp,st.session_state.sa,st.session_state.cycle,st.session_state.pen_p = penalized_logp_standard(mol)
            moses_passed = mol_passes_filters_custom(mol)
            st.session_state.checked_single = moses_passed


def optim_single(smiles,model,lr,sim_cutoff,n_iter):

        new_smiles,sim = model.optimize(smiles, sim_cutoff=sim_cutoff, lr=lr, num_iter=n_iter)

        return new_smiles,sim

        
            
def Optimize_a_batch():
    st.session_state.sc_name = ['logp','sa','cycle','pen_logp']
    st.session_state.new_sc_name = ['new_'+n for n in st.session_state.sc_name]
    st.markdown("<h2 style='text-align: center;'>Optimize a batch</h2>",unsafe_allow_html=True)
    with st.expander(':snowman: :blue[Instruction]'):
        guide = """<h4 style='color:tomato;'>Steps to optimize a molucule</h4>
        1. Upload a text file with SMILES string on each line.</br>
        2. Check the SMILES strings to make sure that they are valid and pass MOSES filters.</br>
        3. Select scores to calculate (penalized LogP included). Keep passed SMILES and calculate selected scores.</br>
        4. Configure the settings to generate new molecules. The new molecules should have higher penalized LogP values.</br>
            - Learning rate: How 'far' from each molecule that you want to search</br>
            - Similarity cutoff: How 'similar' to each molecule that you want to search</br>
            - Number of iterations: Number of generation trials per molecule</br>
        5. <i>(Optional)</i> You can download the dataframe at any steps as *.csv file.</br>
        <h4 style='color:darkturquoise;'>Annotation</h4>
        <b>SMILES</b> - Simplified molecular-input line-entry system</br>
        <b>LogP</b> - The log of the partition coefficient of a solute between octanol and water, at near infinite dilution</br>
        <b>SA score</b> - Synthetic Accessibility Score (lower is better)</br>
        <b>Cycle score</b> - A number of carbon rings of size larger than 6 (lower is better)</br>
        <b>Penalized LogP</b> - Standardized score of <i>LogP - SA score - Cycle score</i></br>
        <b>Similarity</b> - Molecular similarity is calculated via Morgan fingerprint of radius 2 with Tanimoto similarity</br>
        """
        st.markdown(guide,unsafe_allow_html=True)
        
    with st.sidebar:
        sidebar_con = st.empty()
    # sidebar_con.empty()
    with sidebar_con.container():
            set_step(0)
            oab_sidebar(0)
    oab_upl_container = st.empty()
    if 'smiles_upload_change' not in st.session_state:
        st.session_state.smiles_upload_change = False
    if 'checked_batch' not in st.session_state:
        st.session_state.checked_batch = False
    if 'batch_left_checked' not in st.session_state:
        st.session_state.batch_left_checked = False
    if 'scores_calculated' not in st.session_state:
        st.session_state.scores_calculated = False
    if 'batch_optimized' not in st.session_state:
        st.session_state.batch_optimized = False
    
    with oab_upl_container.container():
        st.session_state['smiles_file'] = st.file_uploader("Upload a text file with SMILES on each line :sparkles:",on_change=reset_oab_state)
    if 'check_batch_butt' not in locals():
        check_batch_butt = False
    
    if st.session_state['smiles_file'] is not None:
        if st.session_state.smiles_upload_change:
            smiles_list = io.StringIO(st.session_state.smiles_file.getvalue().decode("utf-8"))
            smiles_list = list(smiles_list.getvalue().rstrip().split('\n'))
            st.markdown('Number of SMILES: '+str(len(smiles_list)))
            if len(smiles_list) == 1:
                    st.markdown("<p style='text-align: center; color: red;'><b>Please use <i>Optimize a molecule</i> tab.</b></p>",unsafe_allow_html=True)
                    with sidebar_con.container():
                        set_step(0)
                        oab_sidebar(0)
            else:
                st.session_state['df'] = pd.DataFrame({'SMILES':smiles_list})
                st.dataframe(st.session_state['df'],use_container_width=True)
                check_batch_butt = st.button('Check SMILES')
        else:
            # if not st.session_state.checked_batch:
            if st.session_state['smiles_file'] is not None:
                st.dataframe(st.session_state['df'],use_container_width=True)
                # st.button('Check SMILES',on_click=check_batch,args=[smiles_list],key='check_batch_butt')

    if check_batch_butt:
        if st.session_state.smiles_upload_change:
            with sidebar_con.container():
                    set_step(1)
                    oab_sidebar(1)
            check_batch(list(st.session_state['df'].SMILES))
            st.session_state.smiles_upload_change = False

    if 'calc_batch_butt' not in locals():
        calc_batch_butt = False
    check_batch_con = st.empty()
    calc_batch_con = st.empty()
    if st.session_state.checked_batch:
        with check_batch_con.container():
            passed_num = st.session_state['df'][st.session_state['df'].checked != 'invalid'].shape[0]
            st.markdown('Number of passed SMILES: '+str(passed_num))
            st.dataframe(st.session_state['df'].style.applymap(highlight_result, subset=pd.IndexSlice[:, ['checked']]),use_container_width=True)
            if passed_num == 0:
                st.markdown("<p style='text-align: center; color: red;'><b>The uploaded file contains no suitable SMILES string.</b></p>",unsafe_allow_html=True)
                st.session_state.batch_left_checked = False
                with sidebar_con.container():
                        set_step(0)
                        oab_sidebar(0)
            else:
                st.session_state.batch_left_checked = True
            df = st.session_state['df']
            download_df(df,0)
            choose_score_con = st.empty()
            if st.session_state.batch_left_checked:
                with sidebar_con.container():
                    set_step(2)
                    oab_sidebar(2)
                with choose_score_con.container():
                    with st.form("Choose score to calculate"):
                        st.markdown("<h4>Choose score(s) to calculate</h4>",unsafe_allow_html=True)
                        st.caption('Penalized LogP is always calculated.')
                        st.checkbox('LogP',key='logp_cal')
                        st.checkbox('SA score',key='sa_cal')
                        st.checkbox('Cycle score',key='cycle_cal')
                        calc_batch_butt = st.form_submit_button("Keep passed SMILES and calculate scores")
            else:
                choose_score_con.empty()
    else:
        check_batch_con.empty()
    
    if 'optim_batch_butt' not in locals():
        optim_batch_butt = False
    # if 'calc_batch_butt' in st.session_state:
    if calc_batch_butt and st.session_state.batch_left_checked:
        # if not st.session_state.scores_calculated:
        smiles_list = list(st.session_state['df'][st.session_state['df'].checked != 'invalid'].checked)
        st.session_state.score_df = calc_scores(smiles_list)
        st.session_state.batch_optimized = False
    if st.session_state.scores_calculated:
        calc_batch_con.empty()
        with calc_batch_con.container():
            st.dataframe(st.session_state.score_df,use_container_width=True)
            score_df = st.session_state.score_df
            download_df(score_df,1)
            with sidebar_con.container():
                set_step(3)
                oab_sidebar(3)
            with st.form(":gear: Settings"):
                    st.slider('Choose learning rate: ',0.0,5.0,0.4,key='lr_b')
                    st.slider('Choose similarity cutoff: ',0.0,1.0,0.4,key='sim_cutoff_b')
                    st.slider('Choose number of iterations: ',1,100,80,key='n_iter_b')
                    optim_batch_butt = st.form_submit_button("Optimize")
    else:
        calc_batch_con.empty()
    
    
    optim_batch_con = st.empty()
    ani_con = st.empty()
    if optim_batch_butt and st.session_state.scores_calculated:
        optim_batch_con.empty()
        with sidebar_con.container():
                set_step(4)
                oab_sidebar(4)
        with ani_con.container():
            st.markdown('Operation in progress. Please wait...')
            gen_results = []
            render_animation()
            st.markdown('Generating new SMILES string(s)...')
            model = load_model()
            for canon_smiles in stqdm(list(st.session_state.score_df.SMILES)):
                gen_results.append(optim_single(canon_smiles,model,st.session_state.lr_b,st.session_state.sim_cutoff_b,st.session_state.n_iter_b))
            st.markdown('Checking generated SMILES string(s) ...')
            st.session_state.new_score_df = calc_scores_new(gen_results)
        ani_con.empty()
    if st.session_state.batch_optimized:
        with sidebar_con.container():
                set_step(5)
                oab_sidebar(5)
        with optim_batch_con.container():
            new_score_df = st.session_state.new_score_df
            # new_score_df.style.applymap(highlight_result, subset=pd.IndexSlice[:, ['new_smiles']])
            st.markdown("<h3 style='text-align: center; color: mediumseagreen;'>RESULTS</h3>",unsafe_allow_html=True)
            st.dataframe(new_score_df.style.applymap(highlight_result, subset=pd.IndexSlice[:, ['new_smiles']]),use_container_width=True)
            download_df(new_score_df,3)
    else:
        optim_batch_con.empty()
        

def process_check_single(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if (mol is not None) and (mol_passes_filters_custom(mol) == 'YES'):
        return Chem.MolToSmiles(mol)
    else:
        return 'invalid'
def check_batch(smiles_list):
    check = []
    # check = Parallel(n_jobs=-1,backend='loky')(
    #     delayed(process_check_single)(smi) for smi in stqdm(smiles_list)
    # )
    for smi in stqdm(smiles_list):
            mol = Chem.MolFromSmiles(smi)
            if (mol is not None) and (mol_passes_filters_custom(mol) == 'YES'):
                check.append(Chem.MolToSmiles(mol))
            else:
                check.append('invalid')
    st.session_state['df'] = pd.concat([st.session_state['df'],pd.DataFrame({'checked':check})],axis=1)
    st.session_state.checked_batch = True
    # return check

def calc_scores(smiles_list):
    score_df = pd.concat([st.session_state.df[st.session_state.df.checked != 'invalid'].SMILES,pd.DataFrame({'Checked_SMILES':smiles_list})],axis=1)
    scores =[]
    # scores = Parallel(n_jobs=-1,backend='loky')(
    #     delayed(penalized_logp_standard)(Chem.MolFromSmiles(smi)) for smi in stqdm(smiles_list)
    # )
    for smi in stqdm(smiles_list):
        logp,sa,cycle,pen_logp = penalized_logp_standard(Chem.MolFromSmiles(smi))
        scores+=[(logp,sa,cycle,pen_logp)]
    s_df = pd.DataFrame(scores,columns=st.session_state.sc_name)
    for n, checked in zip(st.session_state.sc_name,[st.session_state.logp_cal,st.session_state.sa_cal,st.session_state.cycle_cal,True]):
        if checked:
            score_df = pd.concat([score_df,s_df[n]],axis=1)
    st.session_state.scores_calculated = True
    return score_df

def process_calc_new_score(new_smiles,sim):
    if new_smiles is None:
        return ('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)
    else:
        new_mol = Chem.MolFromSmiles(new_smiles)
        if new_mol is None:
            return ('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)
        else:
            logp,sa,cycle,pen_logp = penalized_logp_standard(new_mol)
            return (new_smiles,sim,logp,sa,cycle,pen_logp)

def calc_scores_new(result):
    new_scores =[]
    # new_scores = Parallel(n_jobs=-1,backend='loky')(
    #     delayed(process_calc_new_score)(new_smiles,sim) for new_smiles,sim in stqdm(result)
    # )
    for new_smiles,sim in stqdm(result):
        if new_smiles is None:
            new_scores+=[('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)]
        else:
            new_mol = Chem.MolFromSmiles(new_smiles)
            if new_mol is None:
                new_scores+=[('invalid',-100.0,-100.0,-100.0,-100.0,-100.0)]
            else:
                logp,sa,cycle,pen_logp = penalized_logp_standard(new_mol)
                new_scores+=[(new_smiles,sim,logp,sa,cycle,pen_logp)]
    new_col = ['new_smiles','sim']+st.session_state.new_sc_name
    s_df = pd.DataFrame(new_scores,columns=new_col)
    new_score_df = st.session_state.score_df
    for n, checked in zip(new_col,[True, True,st.session_state.logp_cal,st.session_state.sa_cal,st.session_state.cycle_cal,True]):
        if checked:
            new_score_df = pd.concat([new_score_df,s_df[n]],axis=1)
    st.session_state.batch_optimized = True
    return new_score_df

def highlight_result(value):
    if value == 'invalid': color = 'tomato'
    else: color = 'mediumseagreen'
    return 'color: %s' % color

@st.cache_data(experimental_allow_widgets=True)
def download_df(df,id):
    with st.expander(':arrow_down: Download this dataframe'):
        st.markdown("<h4 style='color:tomato;'>Select column(s) to save:</h4>",unsafe_allow_html=True)
        for col in df.columns:
            st.checkbox(col,key=str(id)+'_col_'+str(col),value=True)
        st.text_input('File name (.csv):','dataframe',key=str(id)+'_file_name')
        
        ste.download_button('Download',df_to_file(df[[col for col in df.columns if st.session_state[str(id)+'_col_'+str(col)]]]),st.session_state[str(id)+'_file_name']+'.csv')

def reset_oam_state():
    st.session_state.smiles_selected = False
    st.session_state.checked_single = 'NO'
    st.session_state.smiles_checked = False
    st.session_state.single_optimized = False
    st.session_state.compared = False
    set_step(0)
    
def reset_oab_state():
    st.session_state.smiles_upload_change = True
    st.session_state.smiles_uploaded = False
    st.session_state.checked_batch = False
    st.session_state.batch_left_checked = False
    st.session_state.scores_calculated = False
    st.session_state.batch_optimized = False
    set_step(0)

def rerun():
    st.experimental_rerun()
def render_view():
    # render_sidebar(st.session_state.current_view,st.session_state.current_step)
    form_header()
    form_body()


render_view()