Trương Gia Bảo commited on
Commit
f9355e9
·
1 Parent(s): 69a5b2c
Files changed (5) hide show
  1. about.png +0 -0
  2. app.py +125 -60
  3. fast_jtnn/mol_tree.py +39 -39
  4. requirements.txt +3 -2
  5. style.css +58 -0
about.png ADDED
app.py CHANGED
@@ -1,5 +1,9 @@
 
1
  import torch
 
2
  import streamlit as st
 
 
3
  import sys, os
4
  import rdkit
5
  import rdkit.Chem as Chem
@@ -7,6 +11,8 @@ from rdkit.Chem.Draw import MolToImage
7
  from rdkit.Chem import Descriptors
8
  import sascorer
9
  import networkx as nx
 
 
10
 
11
  os.environ['KMP_DUPLICATE_LIB_OK']='True'
12
 
@@ -15,21 +21,34 @@ from mol_tree import Vocab, MolTree
15
  from jtprop_vae import JTPropVAE
16
  from molbloom import buy
17
 
18
-
19
- lg = rdkit.RDLogger.logger()
20
- lg.setLevel(rdkit.RDLogger.CRITICAL)
21
-
22
- st.header('Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)')
23
- st.subheader('Wengong Jin, Regina Barzilay, Tommi Jaakkola')
24
- descrip = '''
25
- We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
26
-
27
- [https://arxiv.org/abs/1802.04364](https://arxiv.org/abs/1802.04364)'''
28
-
29
- with st.expander('About'):
30
- st.markdown(descrip)
31
-
32
- st.text_input('Enter a SMILES string:','CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F',key='smiles')
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  def penalized_logp_standard(mol):
35
 
@@ -61,51 +80,97 @@ def penalized_logp_standard(mol):
61
  standardized_cycle = (cycle_score - cycle_mean) / cycle_std
62
  return standardized_log_p + standardized_SA + standardized_cycle
63
 
64
- mol = Chem.MolFromSmiles(st.session_state.smiles)
65
- if mol is None:
66
- st.write('SMILES is invalid. Please enter a valid SMILES.')
67
- else:
68
- st.write('Molecule:')
69
- st.image(MolToImage(mol,size=(300,300)))
70
- score = penalized_logp_standard(mol)
71
- st.write('Penalized logP score: %.5f' % (score))
72
-
73
- if mol is not None:
74
- st.slider('Choose learning rate: ',0.0,10.0,0.4,key='lr')
75
- st.slider('Choose similarity cutoff: ',0.0,3.0,0.4,key='sim_cutoff')
76
- st.slider('Choose number of iterations: ',1,100,80,key='n_iter')
77
- vocab = [x.strip("\r\n ") for x in open('./vocab.txt')]
78
- vocab = Vocab(vocab)
79
- if st.button('Optimize'):
80
- st.write('Testing')
81
-
82
- model = JTPropVAE(vocab, 450, 56, 20, 3)
83
-
84
- model.load_state_dict(torch.load('./model.iter-685000',map_location=torch.device('cpu')))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
- new_smiles,sim = model.optimize(st.session_state.smiles, sim_cutoff=st.session_state.sim_cutoff, lr=st.session_state.lr, num_iter=st.session_state.n_iter)
87
 
88
- del model
89
- if new_smiles is None:
90
- st.write('Cannot optimize.')
91
- else:
92
- st.write('New SMILES:')
93
- st.code(new_smiles)
94
- new_mol = Chem.MolFromSmiles(new_smiles)
95
- if new_mol is None:
96
- st.write('New SMILES is invalid.')
97
- else:
98
- st.write('New SMILES molecule:')
99
- st.image(MolToImage(new_mol,size=(300,300)))
100
- new_score = penalized_logp_standard(new_mol)
101
- st.write('New penalized logP score: %.5f' % (new_score))
102
- st.write('Caching ZINC20 if necessary...')
103
- if buy(new_smiles, catalog='zinc20',canonicalize=True):
104
- st.write('This molecule exists.')
105
- st.caption('Checked by molbloom.')
106
  else:
107
- st.write('THIS MOLECULE DOES NOT EXIST!')
108
- st.caption('Checked by molbloom.')
109
-
110
-
111
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
  import torch
3
+ from st_on_hover_tabs import on_hover_tabs
4
  import streamlit as st
5
+ st.set_page_config(layout="wide")
6
+
7
  import sys, os
8
  import rdkit
9
  import rdkit.Chem as Chem
 
11
  from rdkit.Chem import Descriptors
12
  import sascorer
13
  import networkx as nx
14
+ from stqdm import stqdm
15
+ import base64, io
16
 
17
  os.environ['KMP_DUPLICATE_LIB_OK']='True'
18
 
 
21
  from jtprop_vae import JTPropVAE
22
  from molbloom import buy
23
 
24
+ css='''
25
+ [data-testid="metric-container"] {
26
+ width: fit-content;
27
+ margin: auto;
28
+ }
29
+
30
+ [data-testid="metric-container"] > div {
31
+ width: fit-content;
32
+ margin: auto;
33
+ }
34
+
35
+ [data-testid="metric-container"] label {
36
+ width: fit-content;
37
+ margin: auto;
38
+ }
39
+ '''
40
+
41
+ st.markdown(f'<style>{css}</style>',unsafe_allow_html=True)
42
+
43
+ def img_to_bytes(img_path):
44
+ img_bytes = Path(img_path).read_bytes()
45
+ encoded = base64.b64encode(img_bytes).decode()
46
+ return encoded
47
+ def img_to_html(img_path):
48
+ img_html = "<img src='data:image/png;base64,{}' class='img-fluid' style='max-width: 500px;'>".format(
49
+ img_to_bytes(img_path)
50
+ )
51
+ return img_html
52
 
53
  def penalized_logp_standard(mol):
54
 
 
80
  standardized_cycle = (cycle_score - cycle_mean) / cycle_std
81
  return standardized_log_p + standardized_SA + standardized_cycle
82
 
83
+ lg = rdkit.RDLogger.logger()
84
+ lg.setLevel(rdkit.RDLogger.CRITICAL)
85
+
86
+ st.markdown("<h1 style='text-align: center;'>Junction Tree Variational Autoencoder for Molecular Graph Generation (JTVAE)</h1>",unsafe_allow_html=True)
87
+ st.markdown("<h3 style='text-align: center;'>Wengong Jin, Regina Barzilay, Tommi Jaakkola</h3>",unsafe_allow_html=True)
88
+ st.markdown('<style>' + open('./style.css').read() + '</style>', unsafe_allow_html=True)
89
+
90
+ with st.sidebar:
91
+ # st.header('+')
92
+ st.markdown("<h5 style='text-align: center; color:grey;'>Explore</h5>",unsafe_allow_html=True)
93
+ tabs = on_hover_tabs(tabName=['Optimize a molecule', 'Optimize batch', 'About'],
94
+ iconName=['science', 'batch_prediction', 'info'], default_choice=0)
95
+
96
+ if tabs == 'About':
97
+ descrip = '''
98
+ We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
99
+
100
+ [https://arxiv.org/abs/1802.04364](https://arxiv.org/abs/1802.04364)'''
101
+ st.markdown(descrip)
102
+ st.markdown("<p style='text-align: center;'>"+
103
+ img_to_html('about.png')+
104
+ "</p>", unsafe_allow_html=True)
105
+ elif tabs == 'Optimize a molecule':
106
+ st.markdown("<h2 style='text-align: center;'>Optimize a molecule</h2>",unsafe_allow_html=True)
107
+ st.text_input('Enter a SMILES string:','CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F',key='smiles')
108
+
109
+ mol = Chem.MolFromSmiles(st.session_state.smiles)
110
+ if mol is None:
111
+ st.markdown("<p style='text-align: center; color: red;'>SMILES is invalid. Please enter a valid SMILES.</p>",unsafe_allow_html=True)
112
+ else:
113
+ score = penalized_logp_standard(mol)
114
+ # with st.columns(3)[1]:
115
+ # st.markdown("<style>{text-align: center;}</style>",unsafe_allow_html=True)
116
+ imgByteArr = io.BytesIO()
117
+ MolToImage(mol,size=(400,400)).save(imgByteArr,format='PNG')
118
+ st.markdown("<p style='text-align: center;'>"+
119
+ f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
120
+ "</p>", unsafe_allow_html=True)
121
+ # st.image(MolToImage(mol,size=(300,300)))
122
+ st.metric('Penalized logP score', '%.5f' % (score))
123
+
124
+ if mol is not None:
125
+ # col1, col2, col3 = st.columns(3)
126
+ st.slider('Choose learning rate: ',0.0,10.0,0.4,key='lr')
127
+ st.slider('Choose similarity cutoff: ',0.0,3.0,0.4,key='sim_cutoff')
128
+ st.slider('Choose number of iterations: ',1,100,80,key='n_iter')
129
+ vocab = [x.strip("\r\n ") for x in open('./vocab.txt')]
130
+ vocab = Vocab(vocab)
131
+ if st.button('Optimize'):
132
+ # st.write('Testing')
133
+
134
+ # with st.columns(3)[1]:
135
+ with st.spinner("Operation in progress. Please wait."):
136
+
137
+ model = JTPropVAE(vocab, 450, 56, 20, 3)
138
+
139
+ model.load_state_dict(torch.load('./model.iter-685000',map_location=torch.device('cpu')))
140
 
141
+ new_smiles,sim = model.optimize(st.session_state.smiles, sim_cutoff=st.session_state.sim_cutoff, lr=st.session_state.lr, num_iter=st.session_state.n_iter)
142
 
143
+ del model
144
+ if new_smiles is None:
145
+ st.markdown("<p style='text-align: center; color: red;'>Cannot optimize! Please choose another setting.</p>",unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  else:
147
+ st.markdown("<b style='text-align: center;'>New SMILES</b>",unsafe_allow_html=True)
148
+ st.code(new_smiles)
149
+ new_mol = Chem.MolFromSmiles(new_smiles)
150
+ if new_mol is None:
151
+ st.markdown("<p style='text-align: center; color: red;'>New SMILES is invalid! Please choose another setting.</p>",unsafe_allow_html=True)
152
+ # st.write('New SMILES is invalid.')
153
+ else:
154
+ # st.write('New SMILES molecule:')
155
+ imgByteArr = io.BytesIO()
156
+ MolToImage(new_mol,size=(400,400)).save(imgByteArr,format='PNG')
157
+ st.markdown("<p style='text-align: center;'>"+
158
+ f"<img src='data:image/png;base64,{base64.b64encode(imgByteArr.getvalue()).decode()}' class='img-fluid'>"+
159
+ "</p>", unsafe_allow_html=True)
160
+ new_score = penalized_logp_standard(new_mol)
161
+ # st.write('New penalized logP score: %.5f' % (new_score))
162
+ st.metric('New penalized logP score','%.5f' % (new_score), '%.5f'%(new_score-score))
163
+ st.metric('Similarity','%.5f' % (sim))
164
+ # st.write('Caching ZINC20 if necessary...')
165
+ with st.spinner("Caching ZINC20 if necessary..."):
166
+ if buy(new_smiles, catalog='zinc20',canonicalize=True):
167
+ st.write('This molecule exists.')
168
+ st.markdown("<h3 style='text-align: center; color: cyan;'><b>This molecule exists.</h3>",unsafe_allow_html=True)
169
+ else:
170
+ # st.write('THIS MOLECULE DOES NOT EXIST!')
171
+ st.markdown("<h3 style='text-align: center; color: lightgreen;'>THIS MOLECULE DOES NOT EXIST!</h3>",unsafe_allow_html=True)
172
+ st.markdown("<p style='text-align: center; color: grey;'>Checked using molbloom</p>",unsafe_allow_html=True)
173
+ elif tabs == 'Optimize batch':
174
+ st.write('Incoming...')
175
+
176
+
fast_jtnn/mol_tree.py CHANGED
@@ -2,7 +2,7 @@ import rdkit
2
  import rdkit.Chem as Chem
3
  from chemutils import get_clique_mol, tree_decomp, get_mol, get_smiles, set_atommap, enum_assemble, decode_stereo
4
  from vocab import *
5
- import argparse
6
 
7
  class MolTreeNode(object):
8
 
@@ -124,45 +124,45 @@ def data_process_chunk(smiles_list):
124
  # print(i, ' / 1584663')
125
  return list(cset)
126
 
127
- if __name__ == "__main__":
128
- import sys
129
- lg = rdkit.RDLogger.logger()
130
- lg.setLevel(rdkit.RDLogger.CRITICAL)
131
 
132
- i = 0
133
 
134
- import os
135
- from joblib import Parallel,delayed
136
- from tqdm import tqdm
137
- parser = argparse.ArgumentParser()
138
- parser.add_argument('--smiles_path', type=str,required=True)
139
- parser.add_argument('--vocab_path', type=str,required=True)
140
- parser.add_argument('--prop', type=bool,default=False)
141
- parser.add_argument('--ncpu', default=8,type=int)
142
- args = parser.parse_args()
143
-
144
- if args.prop:
145
- import pandas as pd
146
- smiles_list = pd.read_csv(args.smiles_path,usecols=['SMILES'])
147
- smiles_list = list(smiles_list.SMILES)
148
- else:
149
- with open(args.smiles_path,'r') as f:
150
- smiles_list = [line.split()[0] for line in f]
151
- print('Total smiles = ',len(smiles_list))
152
-
153
- # moses: 1584663
154
 
155
- chunk_size = 10000
156
- vocab_set_list = Parallel(n_jobs=args.ncpu)(
157
- delayed(data_process_chunk)(smiles_list[start: start + chunk_size])
158
- for start in tqdm(range(0, len(smiles_list), chunk_size))
159
- )
160
- vocab_list =[]
161
- for set_list in vocab_set_list:
162
- vocab_list.extend(set_list)
163
-
164
- cset = set(vocab_list)
165
- with open(args.vocab_path,'w') as f:
166
- for x in cset:
167
- f.write(''.join([x,'\n']))
168
 
 
2
  import rdkit.Chem as Chem
3
  from chemutils import get_clique_mol, tree_decomp, get_mol, get_smiles, set_atommap, enum_assemble, decode_stereo
4
  from vocab import *
5
+ # import argparse
6
 
7
  class MolTreeNode(object):
8
 
 
124
  # print(i, ' / 1584663')
125
  return list(cset)
126
 
127
+ # if __name__ == "__main__":
128
+ # import sys
129
+ # lg = rdkit.RDLogger.logger()
130
+ # lg.setLevel(rdkit.RDLogger.CRITICAL)
131
 
132
+ # i = 0
133
 
134
+ # import os
135
+ # from joblib import Parallel,delayed
136
+ # from tqdm import tqdm
137
+ # parser = argparse.ArgumentParser()
138
+ # parser.add_argument('--smiles_path', type=str,required=True)
139
+ # parser.add_argument('--vocab_path', type=str,required=True)
140
+ # parser.add_argument('--prop', type=bool,default=False)
141
+ # parser.add_argument('--ncpu', default=8,type=int)
142
+ # args = parser.parse_args()
143
+
144
+ # if args.prop:
145
+ # import pandas as pd
146
+ # smiles_list = pd.read_csv(args.smiles_path,usecols=['SMILES'])
147
+ # smiles_list = list(smiles_list.SMILES)
148
+ # else:
149
+ # with open(args.smiles_path,'r') as f:
150
+ # smiles_list = [line.split()[0] for line in f]
151
+ # print('Total smiles = ',len(smiles_list))
152
+
153
+ # # moses: 1584663
154
 
155
+ # chunk_size = 10000
156
+ # vocab_set_list = Parallel(n_jobs=args.ncpu)(
157
+ # delayed(data_process_chunk)(smiles_list[start: start + chunk_size])
158
+ # for start in tqdm(range(0, len(smiles_list), chunk_size))
159
+ # )
160
+ # vocab_list =[]
161
+ # for set_list in vocab_set_list:
162
+ # vocab_list.extend(set_list)
163
+
164
+ # cset = set(vocab_list)
165
+ # with open(args.vocab_path,'w') as f:
166
+ # for x in cset:
167
+ # f.write(''.join([x,'\n']))
168
 
requirements.txt CHANGED
@@ -1,8 +1,9 @@
1
  rdkit
2
  numpy
3
  torch
4
- argparse
5
  tqdm
6
  networkx
7
  scipy
8
- molbloom
 
 
 
1
  rdkit
2
  numpy
3
  torch
 
4
  tqdm
5
  networkx
6
  scipy
7
+ molbloom
8
+ st_on_hover_tabs
9
+ stqdm
style.css ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ section[data-testid='stSidebar'] {
2
+ background-color: #111;
3
+ min-width:unset !important;
4
+ width: unset !important;
5
+ flex-shrink: unset !important;
6
+
7
+ }
8
+
9
+ button[kind="header"] {
10
+ background-color: transparent;
11
+ color:rgb(180, 167, 141)
12
+ }
13
+
14
+ @media(hover){
15
+ /* header element to be removed */
16
+ header[data-testid="stHeader"] {
17
+ display:none;
18
+ }
19
+
20
+ /* The navigation menu specs and size */
21
+ section[data-testid='stSidebar'] > div {
22
+ height: 100%;
23
+ width: 95px;
24
+ position: relative;
25
+ z-index: 1;
26
+ top: 0;
27
+ left: 0;
28
+ background-color: #111;
29
+ overflow-x: hidden;
30
+ transition: 0.5s ease;
31
+ padding-top: 60px;
32
+ white-space: nowrap;
33
+ }
34
+
35
+ /* The navigation menu open and close on hover and size */
36
+ /* section[data-testid='stSidebar'] > div {
37
+ height: 100%;
38
+ width: 75px; /* Put some width to hover on. */
39
+ /* }
40
+
41
+ /* ON HOVER */
42
+ section[data-testid='stSidebar'] > div:hover{
43
+ width: 300px;
44
+ }
45
+
46
+ /* The button on the streamlit navigation menu - hidden */
47
+ /* button[kind="header"] {
48
+ display: none;
49
+ } */
50
+ }
51
+
52
+ @media(max-width: 272px){
53
+
54
+ section[data-testid='stSidebar'] > div {
55
+ width:15rem;
56
+ }
57
+ }
58
+