File size: 13,472 Bytes
d85d83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e391132
f5bb76d
e391132
f5bb76d
d85d83b
8f3e4ca
 
d85d83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
 
 
 
d85d83b
 
 
 
 
8f3e4ca
 
d85d83b
8f3e4ca
d85d83b
 
 
 
71c1aec
d85d83b
 
 
 
 
 
 
 
 
 
 
8f3e4ca
 
 
 
 
 
d85d83b
3a2569c
d85d83b
 
8f3e4ca
d85d83b
 
 
 
 
 
71c1aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2569c
 
e391132
 
3a2569c
e391132
 
3a2569c
8f3e4ca
 
 
 
 
 
 
 
e391132
 
8f3e4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e391132
8f3e4ca
 
 
 
e391132
8f3e4ca
e391132
 
 
ddd82d3
 
e391132
8f3e4ca
 
e391132
 
 
 
 
 
8f3e4ca
e391132
 
8f3e4ca
 
 
 
e391132
8f3e4ca
e391132
 
 
 
 
8f3e4ca
e391132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aafacb6
e391132
 
 
 
 
 
 
 
 
 
 
d85d83b
e391132
 
 
8f3e4ca
e391132
 
 
8f3e4ca
e391132
 
 
aafacb6
e391132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
e391132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import math
import statistics
from typing import List, Optional, Union

import datasets
import evaluate
import numpy as np

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of generated time series.
        shape: (num_generation, num_timesteps, num_features)
    references: list of reference
        shape: (num_reference, num_timesteps, num_features)
Returns:
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("bowdbeg/matching_series")
    >>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]])
    >>> print(results)
    {'matchin': 1.0}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class matching_series(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
                    "references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
                }
            ),
            # Homepage of the module for documentation
            homepage="https://huggingface.co/spaces/bowdbeg/matching_series",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        pass

    def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
        """Compute the evaluation module.

        Usage of positional arguments is not allowed to prevent mistakes.

        Args:
            predictions (`list/array/tensor`, *optional*):
                Predictions.
            references (`list/array/tensor`, *optional*):
                References.
            **kwargs (optional):
                Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
                method (see details in the docstring).

        Return:
            `dict` or `None`

            - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
            - `None` if the evaluation module is not run on the main process (`process_id != 0`).

        ```py
        >>> import evaluate
        >>> accuracy =  evaluate.load("accuracy")
        >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1])
        ```
        """
        all_kwargs = {"predictions": predictions, "references": references, **kwargs}
        if predictions is None and references is None:
            missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
            all_kwargs.update(missing_kwargs)
        else:
            missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
            if missing_inputs:
                raise ValueError(
                    f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
                )
        inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
        compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
        return self._compute(**inputs, **compute_kwargs)

    def _compute(
        self,
        predictions: Union[List, np.ndarray],
        references: Union[List, np.ndarray],
        batch_size: Optional[int] = None,
        cuc_n_calculation: int = 3,
        cuc_n_samples: Union[List[int], str] = "auto",
    ):
        """
        Compute the scores of the module given the predictions and references
        Args:
            predictions: list of generated time series.
                shape: (num_generation, num_timesteps, num_features)
            references: list of reference
                shape: (num_reference, num_timesteps, num_features)
            batch_size: batch size to use for the computation. If None, the whole dataset is processed at once.
            cuc_n_calculation: number of Coverage Under Curve calculate times
            cuc_n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions.
        Returns:
        """
        predictions = np.array(predictions)
        references = np.array(references)
        if predictions.shape[1:] != references.shape[1:]:
            raise ValueError(
                "The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
                    predictions.shape[1:], references.shape[1:]
                )
            )

        # at first, convert the inputs to numpy arrays

        # MSE between predictions and references for all example combinations for each features
        # shape: (num_generation, num_reference, num_features)
        if batch_size is not None:
            mse = np.zeros((len(predictions), len(references), predictions.shape[-1]))
            # iterate over the predictions and references in batches
            for i in range(0, len(predictions) + batch_size, batch_size):
                for j in range(0, len(references) + batch_size, batch_size):
                    mse[i : i + batch_size, j : j + batch_size] = np.mean(
                        (predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2
                    )
        else:
            mse = np.mean((predictions[:, None] - references) ** 2, axis=1)

        index_mse = mse.diagonal(axis1=0, axis2=1).mean()

        # matching scores
        mse_mean = mse.mean(axis=-1)
        # best match for each generated time series
        # shape: (num_generation,)
        best_match = np.argmin(mse_mean, axis=-1)

        # matching mse
        # shape: (num_generation,)
        precision_mse = mse_mean[np.arange(len(best_match)), best_match].mean()

        # best match for each reference time series
        # shape: (num_reference,)
        best_match_inv = np.argmin(mse_mean, axis=0)
        recall_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean()

        f1_mse = 2 / (1 / precision_mse + 1 / recall_mse)

        # matching precision, recall and f1
        matching_recall = np.unique(best_match).size / len(best_match_inv)
        matching_precision = np.unique(best_match_inv).size / len(best_match)
        matching_f1 = 2 / (1 / matching_precision + 1 / matching_recall)

        # take matching for each feature and compute metrics for them
        precision_mse_features = []
        recall_mse_features = []
        f1_mse_features = []
        matching_precision_features = []
        matching_recall_features = []
        matching_f1_features = []
        index_mse_features = []
        coverages_features = []
        cuc_features = []
        for f in range(predictions.shape[-1]):
            mse_f = mse[:, :, f]
            index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean()
            best_match_f = np.argmin(mse_f, axis=-1)
            precision_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean()
            best_match_inv_f = np.argmin(mse_f, axis=0)
            recall_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean()
            f1_mse_f = 2 / (1 / precision_mse_f + 1 / recall_mse_f)
            precision_mse_features.append(precision_mse_f)
            recall_mse_features.append(recall_mse_f)
            f1_mse_features.append(f1_mse_f)
            index_mse_features.append(index_mse_f)

            matching_precision_f = np.unique(best_match_f).size / len(best_match_f)
            matching_recall_f = np.unique(best_match_inv_f).size / len(best_match_inv_f)
            matching_f1_f = 2 / (1 / matching_precision_f + 1 / matching_recall_f)
            matching_precision_features.append(matching_precision_f)
            matching_recall_features.append(matching_recall_f)
            matching_f1_features.append(matching_f1_f)

            coverages_f, cuc_f = self.compute_cuc(best_match_f, len(references), cuc_n_calculation, cuc_n_samples)
            coverages_features.append(coverages_f)
            cuc_features.append(cuc_f)

        macro_precision_mse = statistics.mean(precision_mse_features)
        macro_recall_mse = statistics.mean(recall_mse_features)
        macro_f1_mse = statistics.mean(f1_mse_features)
        macro_index_mse = statistics.mean(index_mse_features)

        macro_matching_precision = statistics.mean(matching_precision_features)
        macro_matching_recall = statistics.mean(matching_recall_features)
        macro_matching_f1 = statistics.mean(matching_f1_features)

        # cuc
        coverages, cuc = self.compute_cuc(best_match, len(references), cuc_n_calculation, cuc_n_samples)

        macro_cuc = statistics.mean(cuc_features)
        macro_coverages = [statistics.mean(c) for c in zip(*coverages_features)]

        return {
            "precision_mse": precision_mse,
            "f1_mse": f1_mse,
            "recall_mse": recall_mse,
            "index_mse": index_mse,
            "precision_mse_features": precision_mse_features,
            "f1_mse_features": f1_mse_features,
            "recall_mse_features": recall_mse_features,
            "index_mse_features": index_mse_features,
            "macro_precision_mse": macro_precision_mse,
            "macro_recall_mse": macro_recall_mse,
            "macro_f1_mse": macro_f1_mse,
            "macro_index_mse": macro_index_mse,
            "matching_precision": matching_precision,
            "matching_recall": matching_recall,
            "matching_f1": matching_f1,
            "matching_precision_features": matching_precision_features,
            "matching_recall_features": matching_recall_features,
            "matching_f1_features": matching_f1_features,
            "macro_matching_precision": macro_matching_precision,
            "macro_matching_recall": macro_matching_recall,
            "macro_matching_f1": macro_matching_f1,
            "cuc": cuc,
            "coverages": coverages,
            "macro_cuc": macro_cuc,
            "macro_coverages": macro_coverages,
            "cuc_features": cuc_features,
            "coverages_features": coverages_features,
        }

    def compute_cuc(
        self,
        match: np.ndarray,
        n_reference: int,
        n_calculation: int,
        n_samples: Union[List[int], str],
    ):
        """
        Compute Coverage Under Curve
        Args:
            match: best match for each generated time series
            n_reference: number of reference time series
            n_calculation: number of Coverage Under Curve calculate times
            n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions.
        Returns:
        """
        n_generaiton = len(match)
        if n_samples == "auto":
            exp = int(math.log2(n_generaiton))
            n_samples = [int(2**i) for i in range(exp)]
            n_samples.append(n_generaiton)
        assert isinstance(n_samples, list) and all(isinstance(n, int) for n in n_samples)

        coverages = []
        for n_sample in n_samples:
            coverage = 0
            for _ in range(n_calculation):
                sample = np.random.choice(match, size=n_sample, replace=False)  # type: ignore
                coverage += len(np.unique(sample)) / n_reference
            coverages.append(coverage / n_calculation)
        cuc = np.trapz(coverages, n_samples) / len(n_samples) / max(n_samples)
        return coverages, cuc