Spaces:
Running
Running
File size: 13,472 Bytes
d85d83b e391132 f5bb76d e391132 f5bb76d d85d83b 8f3e4ca d85d83b 8f3e4ca d85d83b 8f3e4ca d85d83b 8f3e4ca d85d83b 71c1aec d85d83b 8f3e4ca d85d83b 3a2569c d85d83b 8f3e4ca d85d83b 71c1aec 3a2569c e391132 3a2569c e391132 3a2569c 8f3e4ca e391132 8f3e4ca e391132 8f3e4ca e391132 8f3e4ca e391132 ddd82d3 e391132 8f3e4ca e391132 8f3e4ca e391132 8f3e4ca e391132 8f3e4ca e391132 8f3e4ca e391132 aafacb6 e391132 d85d83b e391132 8f3e4ca e391132 8f3e4ca e391132 aafacb6 e391132 8f3e4ca e391132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import math
import statistics
from typing import List, Optional, Union
import datasets
import evaluate
import numpy as np
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of generated time series.
shape: (num_generation, num_timesteps, num_features)
references: list of reference
shape: (num_reference, num_timesteps, num_features)
Returns:
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("bowdbeg/matching_series")
>>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]])
>>> print(results)
{'matchin': 1.0}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class matching_series(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
}
),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/bowdbeg/matching_series",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
pass
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
"""Compute the evaluation module.
Usage of positional arguments is not allowed to prevent mistakes.
Args:
predictions (`list/array/tensor`, *optional*):
Predictions.
references (`list/array/tensor`, *optional*):
References.
**kwargs (optional):
Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
method (see details in the docstring).
Return:
`dict` or `None`
- Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
- `None` if the evaluation module is not run on the main process (`process_id != 0`).
```py
>>> import evaluate
>>> accuracy = evaluate.load("accuracy")
>>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1])
```
"""
all_kwargs = {"predictions": predictions, "references": references, **kwargs}
if predictions is None and references is None:
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
all_kwargs.update(missing_kwargs)
else:
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
if missing_inputs:
raise ValueError(
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
)
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
return self._compute(**inputs, **compute_kwargs)
def _compute(
self,
predictions: Union[List, np.ndarray],
references: Union[List, np.ndarray],
batch_size: Optional[int] = None,
cuc_n_calculation: int = 3,
cuc_n_samples: Union[List[int], str] = "auto",
):
"""
Compute the scores of the module given the predictions and references
Args:
predictions: list of generated time series.
shape: (num_generation, num_timesteps, num_features)
references: list of reference
shape: (num_reference, num_timesteps, num_features)
batch_size: batch size to use for the computation. If None, the whole dataset is processed at once.
cuc_n_calculation: number of Coverage Under Curve calculate times
cuc_n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions.
Returns:
"""
predictions = np.array(predictions)
references = np.array(references)
if predictions.shape[1:] != references.shape[1:]:
raise ValueError(
"The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
predictions.shape[1:], references.shape[1:]
)
)
# at first, convert the inputs to numpy arrays
# MSE between predictions and references for all example combinations for each features
# shape: (num_generation, num_reference, num_features)
if batch_size is not None:
mse = np.zeros((len(predictions), len(references), predictions.shape[-1]))
# iterate over the predictions and references in batches
for i in range(0, len(predictions) + batch_size, batch_size):
for j in range(0, len(references) + batch_size, batch_size):
mse[i : i + batch_size, j : j + batch_size] = np.mean(
(predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2
)
else:
mse = np.mean((predictions[:, None] - references) ** 2, axis=1)
index_mse = mse.diagonal(axis1=0, axis2=1).mean()
# matching scores
mse_mean = mse.mean(axis=-1)
# best match for each generated time series
# shape: (num_generation,)
best_match = np.argmin(mse_mean, axis=-1)
# matching mse
# shape: (num_generation,)
precision_mse = mse_mean[np.arange(len(best_match)), best_match].mean()
# best match for each reference time series
# shape: (num_reference,)
best_match_inv = np.argmin(mse_mean, axis=0)
recall_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean()
f1_mse = 2 / (1 / precision_mse + 1 / recall_mse)
# matching precision, recall and f1
matching_recall = np.unique(best_match).size / len(best_match_inv)
matching_precision = np.unique(best_match_inv).size / len(best_match)
matching_f1 = 2 / (1 / matching_precision + 1 / matching_recall)
# take matching for each feature and compute metrics for them
precision_mse_features = []
recall_mse_features = []
f1_mse_features = []
matching_precision_features = []
matching_recall_features = []
matching_f1_features = []
index_mse_features = []
coverages_features = []
cuc_features = []
for f in range(predictions.shape[-1]):
mse_f = mse[:, :, f]
index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean()
best_match_f = np.argmin(mse_f, axis=-1)
precision_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean()
best_match_inv_f = np.argmin(mse_f, axis=0)
recall_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean()
f1_mse_f = 2 / (1 / precision_mse_f + 1 / recall_mse_f)
precision_mse_features.append(precision_mse_f)
recall_mse_features.append(recall_mse_f)
f1_mse_features.append(f1_mse_f)
index_mse_features.append(index_mse_f)
matching_precision_f = np.unique(best_match_f).size / len(best_match_f)
matching_recall_f = np.unique(best_match_inv_f).size / len(best_match_inv_f)
matching_f1_f = 2 / (1 / matching_precision_f + 1 / matching_recall_f)
matching_precision_features.append(matching_precision_f)
matching_recall_features.append(matching_recall_f)
matching_f1_features.append(matching_f1_f)
coverages_f, cuc_f = self.compute_cuc(best_match_f, len(references), cuc_n_calculation, cuc_n_samples)
coverages_features.append(coverages_f)
cuc_features.append(cuc_f)
macro_precision_mse = statistics.mean(precision_mse_features)
macro_recall_mse = statistics.mean(recall_mse_features)
macro_f1_mse = statistics.mean(f1_mse_features)
macro_index_mse = statistics.mean(index_mse_features)
macro_matching_precision = statistics.mean(matching_precision_features)
macro_matching_recall = statistics.mean(matching_recall_features)
macro_matching_f1 = statistics.mean(matching_f1_features)
# cuc
coverages, cuc = self.compute_cuc(best_match, len(references), cuc_n_calculation, cuc_n_samples)
macro_cuc = statistics.mean(cuc_features)
macro_coverages = [statistics.mean(c) for c in zip(*coverages_features)]
return {
"precision_mse": precision_mse,
"f1_mse": f1_mse,
"recall_mse": recall_mse,
"index_mse": index_mse,
"precision_mse_features": precision_mse_features,
"f1_mse_features": f1_mse_features,
"recall_mse_features": recall_mse_features,
"index_mse_features": index_mse_features,
"macro_precision_mse": macro_precision_mse,
"macro_recall_mse": macro_recall_mse,
"macro_f1_mse": macro_f1_mse,
"macro_index_mse": macro_index_mse,
"matching_precision": matching_precision,
"matching_recall": matching_recall,
"matching_f1": matching_f1,
"matching_precision_features": matching_precision_features,
"matching_recall_features": matching_recall_features,
"matching_f1_features": matching_f1_features,
"macro_matching_precision": macro_matching_precision,
"macro_matching_recall": macro_matching_recall,
"macro_matching_f1": macro_matching_f1,
"cuc": cuc,
"coverages": coverages,
"macro_cuc": macro_cuc,
"macro_coverages": macro_coverages,
"cuc_features": cuc_features,
"coverages_features": coverages_features,
}
def compute_cuc(
self,
match: np.ndarray,
n_reference: int,
n_calculation: int,
n_samples: Union[List[int], str],
):
"""
Compute Coverage Under Curve
Args:
match: best match for each generated time series
n_reference: number of reference time series
n_calculation: number of Coverage Under Curve calculate times
n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions.
Returns:
"""
n_generaiton = len(match)
if n_samples == "auto":
exp = int(math.log2(n_generaiton))
n_samples = [int(2**i) for i in range(exp)]
n_samples.append(n_generaiton)
assert isinstance(n_samples, list) and all(isinstance(n, int) for n in n_samples)
coverages = []
for n_sample in n_samples:
coverage = 0
for _ in range(n_calculation):
sample = np.random.choice(match, size=n_sample, replace=False) # type: ignore
coverage += len(np.unique(sample)) / n_reference
coverages.append(coverage / n_calculation)
cuc = np.trapz(coverages, n_samples) / len(n_samples) / max(n_samples)
return coverages, cuc
|