Spaces:
Running
Running
implement metric
Browse files- .gitignore +133 -0
- README.md +1 -1
- __main__.py +37 -0
- matching_series.py +98 -26
- requirements.txt +2 -1
.gitignore
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
data/
|
3 |
+
output/
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
pip-wheel-metadata/
|
28 |
+
share/python-wheels/
|
29 |
+
*.egg-info/
|
30 |
+
.installed.cfg
|
31 |
+
*.egg
|
32 |
+
MANIFEST
|
33 |
+
|
34 |
+
# PyInstaller
|
35 |
+
# Usually these files are written by a python script from a template
|
36 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
37 |
+
*.manifest
|
38 |
+
*.spec
|
39 |
+
|
40 |
+
# Installer logs
|
41 |
+
pip-log.txt
|
42 |
+
pip-delete-this-directory.txt
|
43 |
+
|
44 |
+
# Unit test / coverage reports
|
45 |
+
htmlcov/
|
46 |
+
.tox/
|
47 |
+
.nox/
|
48 |
+
.coverage
|
49 |
+
.coverage.*
|
50 |
+
.cache
|
51 |
+
nosetests.xml
|
52 |
+
coverage.xml
|
53 |
+
*.cover
|
54 |
+
*.py,cover
|
55 |
+
.hypothesis/
|
56 |
+
.pytest_cache/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
.python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
99 |
+
__pypackages__/
|
100 |
+
|
101 |
+
# Celery stuff
|
102 |
+
celerybeat-schedule
|
103 |
+
celerybeat.pid
|
104 |
+
|
105 |
+
# SageMath parsed files
|
106 |
+
*.sage.py
|
107 |
+
|
108 |
+
# Environments
|
109 |
+
.env
|
110 |
+
.venv
|
111 |
+
env/
|
112 |
+
venv/
|
113 |
+
ENV/
|
114 |
+
env.bak/
|
115 |
+
venv.bak/
|
116 |
+
|
117 |
+
# Spyder project settings
|
118 |
+
.spyderproject
|
119 |
+
.spyproject
|
120 |
+
|
121 |
+
# Rope project settings
|
122 |
+
.ropeproject
|
123 |
+
|
124 |
+
# mkdocs documentation
|
125 |
+
/site
|
126 |
+
|
127 |
+
# mypy
|
128 |
+
.mypy_cache/
|
129 |
+
.dmypy.json
|
130 |
+
dmypy.json
|
131 |
+
|
132 |
+
# Pyre type checker
|
133 |
+
.pyre/
|
README.md
CHANGED
@@ -3,7 +3,7 @@ title: matching_series
|
|
3 |
tags:
|
4 |
- evaluate
|
5 |
- metric
|
6 |
-
description:
|
7 |
sdk: gradio
|
8 |
sdk_version: 4.36.1
|
9 |
app_file: app.py
|
|
|
3 |
tags:
|
4 |
- evaluate
|
5 |
- metric
|
6 |
+
description: "Matching-based time-series generation metric"
|
7 |
sdk: gradio
|
8 |
sdk_version: 4.36.1
|
9 |
app_file: app.py
|
__main__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
from argparse import ArgumentParser
|
4 |
+
|
5 |
+
import evaluate
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
parser = ArgumentParser(
|
10 |
+
description="Compute the matching series score between two time series freezed in a numpy array"
|
11 |
+
)
|
12 |
+
parser.add_argument("predictions", type=str, help="Path to the numpy array containing the predictions")
|
13 |
+
parser.add_argument("references", type=str, help="Path to the numpy array containing the references")
|
14 |
+
parser.add_argument("--output", type=str, help="Path to the output file")
|
15 |
+
parser.add_argument("--batch_size", type=int, help="Batch size to use for the computation")
|
16 |
+
args = parser.parse_args()
|
17 |
+
|
18 |
+
if not args.predictions or not args.references:
|
19 |
+
raise ValueError("You must provide the path to the predictions and references numpy arrays")
|
20 |
+
|
21 |
+
predictions = np.load(args.predictions)
|
22 |
+
references = np.load(args.references)
|
23 |
+
|
24 |
+
|
25 |
+
logger.info(f"predictions shape: {predictions.shape}")
|
26 |
+
logger.info(f"references shape: {references.shape}")
|
27 |
+
|
28 |
+
import matching_series
|
29 |
+
|
30 |
+
metric = matching_series.matching_series()
|
31 |
+
# metric = evaluate.load("matching_series.py")
|
32 |
+
results = metric.compute(predictions=predictions, references=references, batch_size=args.batch_size)
|
33 |
+
|
34 |
+
print(results)
|
35 |
+
if args.output:
|
36 |
+
with open(args.output, "w") as f:
|
37 |
+
json.dump(results, f)
|
matching_series.py
CHANGED
@@ -13,9 +13,10 @@
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
16 |
-
import evaluate
|
17 |
import datasets
|
18 |
-
|
|
|
|
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
21 |
_CITATION = """\
|
@@ -36,26 +37,21 @@ This new module is designed to solve this great ML task and is crafted with a lo
|
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
predictions: list of
|
40 |
-
|
41 |
-
references: list of reference
|
42 |
-
|
43 |
Returns:
|
44 |
-
accuracy: description of the first score,
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
Examples should be written in doctest format, and should illustrate how
|
48 |
to use the function.
|
49 |
|
50 |
-
>>> my_new_module = evaluate.load("
|
51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class matching_series(evaluate.Metric):
|
@@ -70,26 +66,102 @@ class matching_series(evaluate.Metric):
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
-
features=datasets.Features(
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
# Homepage of the module for documentation
|
78 |
homepage="http://module.homepage",
|
79 |
# Additional links to the codebase or references
|
80 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
-
def _compute(self, predictions, references):
|
90 |
-
"""
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
|
|
16 |
import datasets
|
17 |
+
import evaluate
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
|
21 |
# TODO: Add BibTeX citation
|
22 |
_CITATION = """\
|
|
|
37 |
_KWARGS_DESCRIPTION = """
|
38 |
Calculates how good are predictions given some references, using certain scores
|
39 |
Args:
|
40 |
+
predictions: list of generated time series.
|
41 |
+
shape: (num_generation, num_timesteps, num_features)
|
42 |
+
references: list of reference
|
43 |
+
shape: (num_reference, num_timesteps, num_features)
|
44 |
Returns:
|
|
|
|
|
45 |
Examples:
|
46 |
Examples should be written in doctest format, and should illustrate how
|
47 |
to use the function.
|
48 |
|
49 |
+
>>> my_new_module = evaluate.load("bowdbeg/matching_series")
|
50 |
+
>>> results = my_new_module.compute(references=[[[0.0, 1.0]]], predictions=[[[0.0, 1.0]]])
|
51 |
>>> print(results)
|
52 |
+
{'matchin': 1.0}
|
53 |
"""
|
54 |
|
|
|
|
|
|
|
55 |
|
56 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
57 |
class matching_series(evaluate.Metric):
|
|
|
66 |
citation=_CITATION,
|
67 |
inputs_description=_KWARGS_DESCRIPTION,
|
68 |
# This defines the format of each prediction and reference
|
69 |
+
features=datasets.Features(
|
70 |
+
{
|
71 |
+
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
|
72 |
+
"references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
|
73 |
+
}
|
74 |
+
),
|
75 |
# Homepage of the module for documentation
|
76 |
homepage="http://module.homepage",
|
77 |
# Additional links to the codebase or references
|
78 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
79 |
+
reference_urls=["http://path.to.reference.url/new_module"],
|
80 |
)
|
81 |
|
82 |
def _download_and_prepare(self, dl_manager):
|
83 |
"""Optional: download external resources useful to compute the scores"""
|
|
|
84 |
pass
|
85 |
|
86 |
+
def _compute(self, predictions: list | np.ndarray, references: list | np.ndarray, batch_size: None | int = None):
|
87 |
+
"""
|
88 |
+
Compute the scores of the module given the predictions and references
|
89 |
+
Args:
|
90 |
+
predictions: list of generated time series.
|
91 |
+
shape: (num_generation, num_timesteps, num_features)
|
92 |
+
references: list of reference
|
93 |
+
shape: (num_reference, num_timesteps, num_features)
|
94 |
+
batch_size: batch size to use for the computation. If None, the whole dataset is processed at once.
|
95 |
+
Returns:
|
96 |
+
"""
|
97 |
+
predictions = np.array(predictions)
|
98 |
+
references = np.array(references)
|
99 |
+
if predictions.shape[1:] != references.shape[1:]:
|
100 |
+
raise ValueError(
|
101 |
+
"The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
|
102 |
+
predictions.shape[1:], references.shape[1:]
|
103 |
+
)
|
104 |
+
)
|
105 |
+
|
106 |
+
# at first, convert the inputs to numpy arrays
|
107 |
+
|
108 |
+
# MSE between predictions and references for all example combinations for each features
|
109 |
+
# shape: (num_generation, num_reference, num_features)
|
110 |
+
if batch_size is not None:
|
111 |
+
mse = np.zeros((len(predictions), len(references), predictions.shape[-1]))
|
112 |
+
# iterate over the predictions and references in batches
|
113 |
+
for i in range(0, len(predictions) + batch_size, batch_size):
|
114 |
+
for j in range(0, len(references) + batch_size, batch_size):
|
115 |
+
mse[i : i + batch_size, j : j + batch_size] = np.mean(
|
116 |
+
(predictions[i : i + batch_size, None] - references[None, j : j + batch_size]) ** 2, axis=-2
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
mse = np.mean((predictions[:, None] - references) ** 2, axis=1)
|
120 |
+
|
121 |
+
index_mse = mse.diagonal(axis1=0, axis2=1).mean()
|
122 |
+
|
123 |
+
# matching scores
|
124 |
+
mse_mean = mse.mean(axis=-1)
|
125 |
+
# best match for each generated time series
|
126 |
+
# shape: (num_generation,)
|
127 |
+
best_match = np.argmin(mse_mean, axis=-1)
|
128 |
+
|
129 |
+
# matching mse
|
130 |
+
# shape: (num_generation,)
|
131 |
+
matching_mse = mse_mean[np.arange(len(best_match)), best_match].mean()
|
132 |
+
|
133 |
+
# best match for each reference time series
|
134 |
+
# shape: (num_reference,)
|
135 |
+
best_match_inv = np.argmin(mse_mean, axis=0)
|
136 |
+
covered_mse = mse_mean[best_match_inv, np.arange(len(best_match_inv))].mean()
|
137 |
+
|
138 |
+
harmonic_mean = 2 / (1 / matching_mse + 1 / covered_mse)
|
139 |
+
|
140 |
+
# take matching for each feature and compute metrics for them
|
141 |
+
matching_mse_features = []
|
142 |
+
covered_mse_features = []
|
143 |
+
harmonic_mean_features = []
|
144 |
+
index_mse_features = []
|
145 |
+
for f in range(predictions.shape[-1]):
|
146 |
+
mse_f = mse[:, :, f]
|
147 |
+
index_mse_f = mse_f.diagonal(axis1=0, axis2=1).mean()
|
148 |
+
best_match_f = np.argmin(mse_f, axis=-1)
|
149 |
+
matching_mse_f = mse_f[np.arange(len(best_match_f)), best_match_f].mean()
|
150 |
+
best_match_inv_f = np.argmin(mse_f, axis=0)
|
151 |
+
covered_mse_f = mse_f[best_match_inv_f, np.arange(len(best_match_inv_f))].mean()
|
152 |
+
harmonic_mean_f = 2 / (1 / matching_mse_f + 1 / covered_mse_f)
|
153 |
+
matching_mse_features.append(matching_mse_f)
|
154 |
+
covered_mse_features.append(covered_mse_f)
|
155 |
+
harmonic_mean_features.append(harmonic_mean_f)
|
156 |
+
index_mse_features.append(index_mse_f)
|
157 |
+
|
158 |
return {
|
159 |
+
"matching_mse": matching_mse,
|
160 |
+
"harmonic_mean": harmonic_mean,
|
161 |
+
"covered_mse": covered_mse,
|
162 |
+
"index_mse": index_mse,
|
163 |
+
"matching_mse_features": matching_mse_features,
|
164 |
+
"harmonic_mean_features": harmonic_mean_features,
|
165 |
+
"covered_mse_features": covered_mse_features,
|
166 |
+
"index_mse_features": index_mse_features,
|
167 |
+
}
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
numpy
|