Spaces:
Running
Running
fix bug
Browse files- dicrect_compute_metric.py +1 -1
- matching_series.py +41 -3
dicrect_compute_metric.py
CHANGED
@@ -3,7 +3,7 @@ from typing import Optional
|
|
3 |
import evaluate
|
4 |
|
5 |
|
6 |
-
class DirectComputeMetric(evaluate.
|
7 |
"""
|
8 |
Base class for metrics that directly compute the score from the predictions and references without add_batch
|
9 |
"""
|
|
|
3 |
import evaluate
|
4 |
|
5 |
|
6 |
+
class DirectComputeMetric(evaluate.EvaluationModule):
|
7 |
"""
|
8 |
Base class for metrics that directly compute the score from the predictions and references without add_batch
|
9 |
"""
|
matching_series.py
CHANGED
@@ -20,8 +20,6 @@ import datasets
|
|
20 |
import evaluate
|
21 |
import numpy as np
|
22 |
|
23 |
-
from dicrect_compute_metric import DirectComputeMetric
|
24 |
-
|
25 |
# TODO: Add BibTeX citation
|
26 |
_CITATION = """\
|
27 |
@InProceedings{huggingface:module,
|
@@ -58,7 +56,7 @@ Examples:
|
|
58 |
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
-
class matching_series(
|
62 |
"""TODO: Short description of my evaluation module."""
|
63 |
|
64 |
def _info(self):
|
@@ -87,6 +85,46 @@ class matching_series(DirectComputeMetric):
|
|
87 |
"""Optional: download external resources useful to compute the scores"""
|
88 |
pass
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def _compute(
|
91 |
self,
|
92 |
predictions: Union[list, np.ndarray],
|
|
|
20 |
import evaluate
|
21 |
import numpy as np
|
22 |
|
|
|
|
|
23 |
# TODO: Add BibTeX citation
|
24 |
_CITATION = """\
|
25 |
@InProceedings{huggingface:module,
|
|
|
56 |
|
57 |
|
58 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
59 |
+
class matching_series(evaluate.Metric):
|
60 |
"""TODO: Short description of my evaluation module."""
|
61 |
|
62 |
def _info(self):
|
|
|
85 |
"""Optional: download external resources useful to compute the scores"""
|
86 |
pass
|
87 |
|
88 |
+
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
|
89 |
+
"""Compute the evaluation module.
|
90 |
+
|
91 |
+
Usage of positional arguments is not allowed to prevent mistakes.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
predictions (`list/array/tensor`, *optional*):
|
95 |
+
Predictions.
|
96 |
+
references (`list/array/tensor`, *optional*):
|
97 |
+
References.
|
98 |
+
**kwargs (optional):
|
99 |
+
Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
|
100 |
+
method (see details in the docstring).
|
101 |
+
|
102 |
+
Return:
|
103 |
+
`dict` or `None`
|
104 |
+
|
105 |
+
- Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
|
106 |
+
- `None` if the evaluation module is not run on the main process (`process_id != 0`).
|
107 |
+
|
108 |
+
```py
|
109 |
+
>>> import evaluate
|
110 |
+
>>> accuracy = evaluate.load("accuracy")
|
111 |
+
>>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1])
|
112 |
+
```
|
113 |
+
"""
|
114 |
+
all_kwargs = {"predictions": predictions, "references": references, **kwargs}
|
115 |
+
if predictions is None and references is None:
|
116 |
+
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
|
117 |
+
all_kwargs.update(missing_kwargs)
|
118 |
+
else:
|
119 |
+
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
|
120 |
+
if missing_inputs:
|
121 |
+
raise ValueError(
|
122 |
+
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
|
123 |
+
)
|
124 |
+
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
|
125 |
+
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
|
126 |
+
return self._compute(**inputs, **compute_kwargs)
|
127 |
+
|
128 |
def _compute(
|
129 |
self,
|
130 |
predictions: Union[list, np.ndarray],
|