testing / app.py
bobpopboom's picture
r1 i want it better
eec50a8 verified
raw
history blame
3.41 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "thrishala/mental_health_chatbot"
try:
# Load model with appropriate device_map and settings
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto", # Use "auto" for device_map instead of device name
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
max_memory={0: "15GiB"} if torch.cuda.is_available() else None,
offload_folder="offload",
).eval() # Set model to evaluation mode
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token # Set padding token if missing
# Perform a dummy generation to initialize model (if needed)
dummy_input = tokenizer("This is a test.", return_tensors="pt").to(model.device)
model.generate(
input_ids=dummy_input.input_ids,
max_new_tokens=1,
return_dict_in_generate=True # Correct parameter name
)
except Exception as e:
print(f"Error loading model: {e}")
exit()
def generate_text(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True # Correct parameter name
)
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
return generated_text
def generate_text_streaming(prompt, max_new_tokens=128):
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
for _ in range(max_new_tokens):
output = model.generate(
input_ids=input_ids,
max_new_tokens=1,
do_sample=False,
eos_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True # Correct parameter name
)
# Get the last generated token
generated_token_id = output.sequences[0, -1]
generated_token = tokenizer.decode([generated_token_id], skip_special_tokens=True)
yield generated_token
# Append new token to input_ids
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1)
if generated_token_id == tokenizer.eos_token_id:
break
def respond(message, history, system_message, max_tokens):
prompt = f"{system_message}\n"
for user_msg, bot_msg in history:
prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
prompt += f"User: {message}\nAssistant:"
try:
for token in generate_text_streaming(prompt, max_tokens):
yield token
except Exception as e:
print(f"Error during generation: {e}")
yield "An error occurred."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly and helpful mental health chatbot.",
label="System message",
),
gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"),
],
)
if __name__ == "__main__":
demo.launch()