import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Determine device device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "thrishala/mental_health_chatbot" try: # Load model with appropriate device_map and settings model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", # Use "auto" for device_map instead of device name torch_dtype=torch.float16, low_cpu_mem_usage=True, max_memory={0: "15GiB"} if torch.cuda.is_available() else None, offload_folder="offload", ).eval() # Set model to evaluation mode tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token # Set padding token if missing # Perform a dummy generation to initialize model (if needed) dummy_input = tokenizer("This is a test.", return_tensors="pt").to(model.device) model.generate( input_ids=dummy_input.input_ids, max_new_tokens=1, return_dict_in_generate=True # Correct parameter name ) except Exception as e: print(f"Error loading model: {e}") exit() def generate_text(prompt, max_new_tokens=128): input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False, eos_token_id=tokenizer.eos_token_id, return_dict_in_generate=True # Correct parameter name ) generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True) return generated_text def generate_text_streaming(prompt, max_new_tokens=128): input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): for _ in range(max_new_tokens): output = model.generate( input_ids=input_ids, max_new_tokens=1, do_sample=False, eos_token_id=tokenizer.eos_token_id, return_dict_in_generate=True # Correct parameter name ) # Get the last generated token generated_token_id = output.sequences[0, -1] generated_token = tokenizer.decode([generated_token_id], skip_special_tokens=True) yield generated_token # Append new token to input_ids input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1) if generated_token_id == tokenizer.eos_token_id: break def respond(message, history, system_message, max_tokens): prompt = f"{system_message}\n" for user_msg, bot_msg in history: prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n" prompt += f"User: {message}\nAssistant:" try: for token in generate_text_streaming(prompt, max_tokens): yield token except Exception as e: print(f"Error during generation: {e}") yield "An error occurred." demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful mental health chatbot.", label="System message", ), gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"), ], ) if __name__ == "__main__": demo.launch()