Spaces:
Running
Running
r1 i want it better
Browse files
app.py
CHANGED
@@ -2,27 +2,32 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
else:
|
8 |
-
device = "cpu"
|
9 |
|
10 |
model_id = "thrishala/mental_health_chatbot"
|
11 |
|
12 |
try:
|
|
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_id,
|
15 |
-
device_map=device
|
16 |
torch_dtype=torch.float16,
|
17 |
low_cpu_mem_usage=True,
|
18 |
-
max_memory={
|
19 |
offload_folder="offload",
|
20 |
-
)
|
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
-
tokenizer.
|
23 |
|
|
|
24 |
dummy_input = tokenizer("This is a test.", return_tensors="pt").to(model.device)
|
25 |
-
model.generate(
|
|
|
|
|
|
|
|
|
26 |
|
27 |
except Exception as e:
|
28 |
print(f"Error loading model: {e}")
|
@@ -37,32 +42,34 @@ def generate_text(prompt, max_new_tokens=128):
|
|
37 |
max_new_tokens=max_new_tokens,
|
38 |
do_sample=False,
|
39 |
eos_token_id=tokenizer.eos_token_id,
|
40 |
-
|
41 |
)
|
42 |
|
43 |
-
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
44 |
return generated_text
|
45 |
|
46 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
47 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
48 |
|
49 |
with torch.no_grad():
|
50 |
-
for
|
51 |
output = model.generate(
|
52 |
input_ids=input_ids,
|
53 |
max_new_tokens=1,
|
54 |
do_sample=False,
|
55 |
eos_token_id=tokenizer.eos_token_id,
|
56 |
-
|
57 |
-
output_scores=True,
|
58 |
)
|
59 |
|
60 |
-
|
|
|
|
|
61 |
yield generated_token
|
62 |
|
|
|
63 |
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1)
|
64 |
|
65 |
-
if
|
66 |
break
|
67 |
|
68 |
def respond(message, history, system_message, max_tokens):
|
@@ -73,7 +80,7 @@ def respond(message, history, system_message, max_tokens):
|
|
73 |
|
74 |
try:
|
75 |
for token in generate_text_streaming(prompt, max_tokens):
|
76 |
-
yield token
|
77 |
except Exception as e:
|
78 |
print(f"Error during generation: {e}")
|
79 |
yield "An error occurred."
|
@@ -90,4 +97,4 @@ demo = gr.ChatInterface(
|
|
90 |
)
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
-
demo.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
# Determine device
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
7 |
|
8 |
model_id = "thrishala/mental_health_chatbot"
|
9 |
|
10 |
try:
|
11 |
+
# Load model with appropriate device_map and settings
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
model_id,
|
14 |
+
device_map="auto", # Use "auto" for device_map instead of device name
|
15 |
torch_dtype=torch.float16,
|
16 |
low_cpu_mem_usage=True,
|
17 |
+
max_memory={0: "15GiB"} if torch.cuda.is_available() else None,
|
18 |
offload_folder="offload",
|
19 |
+
).eval() # Set model to evaluation mode
|
20 |
+
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
22 |
+
tokenizer.pad_token = tokenizer.eos_token # Set padding token if missing
|
23 |
|
24 |
+
# Perform a dummy generation to initialize model (if needed)
|
25 |
dummy_input = tokenizer("This is a test.", return_tensors="pt").to(model.device)
|
26 |
+
model.generate(
|
27 |
+
input_ids=dummy_input.input_ids,
|
28 |
+
max_new_tokens=1,
|
29 |
+
return_dict_in_generate=True # Correct parameter name
|
30 |
+
)
|
31 |
|
32 |
except Exception as e:
|
33 |
print(f"Error loading model: {e}")
|
|
|
42 |
max_new_tokens=max_new_tokens,
|
43 |
do_sample=False,
|
44 |
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
return_dict_in_generate=True # Correct parameter name
|
46 |
)
|
47 |
|
48 |
+
generated_text = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
49 |
return generated_text
|
50 |
|
51 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
52 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
53 |
|
54 |
with torch.no_grad():
|
55 |
+
for _ in range(max_new_tokens):
|
56 |
output = model.generate(
|
57 |
input_ids=input_ids,
|
58 |
max_new_tokens=1,
|
59 |
do_sample=False,
|
60 |
eos_token_id=tokenizer.eos_token_id,
|
61 |
+
return_dict_in_generate=True # Correct parameter name
|
|
|
62 |
)
|
63 |
|
64 |
+
# Get the last generated token
|
65 |
+
generated_token_id = output.sequences[0, -1]
|
66 |
+
generated_token = tokenizer.decode([generated_token_id], skip_special_tokens=True)
|
67 |
yield generated_token
|
68 |
|
69 |
+
# Append new token to input_ids
|
70 |
input_ids = torch.cat([input_ids, output.sequences[:, -1:]], dim=-1)
|
71 |
|
72 |
+
if generated_token_id == tokenizer.eos_token_id:
|
73 |
break
|
74 |
|
75 |
def respond(message, history, system_message, max_tokens):
|
|
|
80 |
|
81 |
try:
|
82 |
for token in generate_text_streaming(prompt, max_tokens):
|
83 |
+
yield token
|
84 |
except Exception as e:
|
85 |
print(f"Error during generation: {e}")
|
86 |
yield "An error occurred."
|
|
|
97 |
)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
+
demo.launch()
|