A newer version of the Streamlit SDK is available:
1.43.2
title: TorchTransformers NLP CV SFT
emoji: π
colorFrom: red
colorTo: gray
sdk: streamlit
sdk_version: 1.43.1
app_file: app.py
pinned: false
license: mit
short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
Deep Research Evaluator: https://huggingface.co/spaces/awacke1/DeepResearchEvaluator
With torch, transformers, and specialized fine tuning of small models
- We can build to specification of input dataset and
- Easily create RAG agents with fine tuned models using duckduckgo and smolagents.
- Show state of art SFT for agentic RAG to help manage models and gain ROI.
Detailed Research Paper Summary
π LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners
Authors: Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
Date: ### 18 May 2022
Word Count (Title): 8 | Word Count (Summary): 219
High Info Terms: list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
ROUGE Score: 6.85%
π€ TTF Read Aloud
- Title: LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners
- Key Terms: list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
- ROUGE: 6.85%
Mermaid Graph of Key Concepts
flowchart TD
T1["list"] --> T2["is"]
T2["is"] --> T3["self-training"]
T3["self-training"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["parameters"]
T5["parameters"] --> T6["we"]
T6["we"] --> T7["few-shot"]
T7["few-shot"] --> T8["learning"]
T8["learning"] --> T9["over"]
T9["over"] --> T10["that"]
T10["that"] --> T11["prompt-based"]
T11["prompt-based"] --> T12["fn"]
T12["fn"] --> T13["use"]
T13["use"] --> T14["as"]
T14["as"] --> T15["model"]
π Composable Sparse Fine-Tuning for Cross-Lingual Transfer
Authors: Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, Ivan Vuli'c
Date: ### 09 Feb 2023
Word Count (Title): 6 | Word Count (Summary): 218
High Info Terms: fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
ROUGE Score: 6.88%
π€ TTF Read Aloud
- Title: Composable Sparse Fine-Tuning for Cross-Lingual Transfer
- Key Terms: fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
- ROUGE: 6.88%
Mermaid Graph of Key Concepts
flowchart TD
T1["fine-tuning"] --> T2["model"]
T2["model"] --> T3["adapters"]
T3["adapters"] --> T4["language"]
T4["language"] --> T5["we"]
T5["we"] --> T6["masks"]
T6["masks"] --> T7["sparse"]
T7["sparse"] --> T8["be"]
T8["be"] --> T9["both"]
T9["both"] --> T10["in a"]
T10["in a"] --> T11["parameters"]
T11["parameters"] --> T12["large"]
T12["large"] --> T13["pretrained"]
T13["pretrained"] --> T14["transfer"]
T14["transfer"] --> T15["prevent"]
π Efficient Fine-Tuning of Compressed Language Models with Learners
Authors: Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J. Clark, Brett H. Meyer, Warren J. Gross
Date: ### 03 Aug 2022
Word Count (Title): 8 | Word Count (Summary): 131
High Info Terms: fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
ROUGE Score: 11.45%
π€ TTF Read Aloud
- Title: Efficient Fine-Tuning of Compressed Language Models with Learners
- Key Terms: fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
- ROUGE: 11.45%
Mermaid Graph of Key Concepts
flowchart TD
T1["fine-tuning"] --> T2["training"]
T2["training"] --> T3["learners"]
T3["learners"] --> T4["models"]
T4["models"] --> T5["works"]
T5["works"] --> T6["learner"]
T6["learner"] --> T7["modules"]
T7["modules"] --> T8["methods"]
T8["methods"] --> T9["that"]
T9["that"] --> T10["convergence"]
T10["convergence"] --> T11["resource"]
T11["resource"] --> T12["utilization"]
T12["utilization"] --> T13["by"]
T13["by"] --> T14["parameters"]
T14["parameters"] --> T15["learner modules"]
π Task Adaptive Parameter Sharing for Multi-Task Learning
Authors: Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul Bhotika, Stefano Soatto
Date: ### 30 Mar 2022
Word Count (Title): 7 | Word Count (Summary): 183
High Info Terms: tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
ROUGE Score: 8.2%
π€ TTF Read Aloud
- Title: Task Adaptive Parameter Sharing for Multi-Task Learning
- Key Terms: tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
- ROUGE: 8.2%
Mermaid Graph of Key Concepts
flowchart TD
T1["tasks"] --> T2["taps"]
T2["taps"] --> T3["model"]
T3["model"] --> T4["downstream"]
T4["downstream"] --> T5["task"]
T5["task"] --> T6["base"]
T6["base"] --> T7["task-specific"]
T7["task-specific"] --> T8["layers"]
T8["layers"] --> T9["while"]
T9["while"] --> T10["downstream tasks"]
T10["downstream tasks"] --> T11["base model"]
T11["base model"] --> T12["models"]
T12["models"] --> T13["learning"]
T13["learning"] --> T14["fine-tuning"]
T14["fine-tuning"] --> T15["is"]
π RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
Authors: Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha, Roberto de M. Estev~ao Filho, Todd Hendry, Daniel Holstein, Jennifer Marsman, Nick Mecklenburg, Sara Malvar, Leonardo O. Nunes, Rafael Padilha, Morris Sharp, Bruno Silva, Swati Sharma, Vijay Aski, Ranveer Chandra
Date: ### 30 Jan 2024
Word Count (Title): 11 | Word Count (Summary): 281
High Info Terms: fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
ROUGE Score: 5.34%
π€ TTF Read Aloud
- Title: RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
- Key Terms: fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
- ROUGE: 5.34%
Mermaid Graph of Key Concepts
flowchart TD
T1["fine-tuning"] --> T2["we"]
T2["we"] --> T3["rag"]
T3["rag"] --> T4["llms"]
T4["llms"] --> T5["pipeline"]
T5["pipeline"] --> T6["p"]
T6["p"] --> T7["rag and"]
T7["rag and"] --> T8["are"]
T8["are"] --> T9["knowledge"]
T9["knowledge"] --> T10["model"]
T10["model"] --> T11["our"]
T11["our"] --> T12["from"]
T12["from"] --> T13["results"]
T13["results"] --> T14["and fine-tuning"]
T14["and fine-tuning"] --> T15["which"]
π Scaling Sparse Fine-Tuning to Large Language Models
Authors: Alan Ansell and Ivan Vuli'c and Hannah Sterz and Anna Korhonen and Edoardo M. Ponti
Date: ### 02 Feb 2024
Word Count (Title): 7 | Word Count (Summary): 219
High Info Terms: we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
ROUGE Score: 6.85%
π€ TTF Read Aloud
- Title: Scaling Sparse Fine-Tuning to Large Language Models
- Key Terms: we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
- ROUGE: 6.85%
Mermaid Graph of Key Concepts
flowchart TD
T1["we"] --> T2["their"]
T2["their"] --> T3["llms"]
T3["llms"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["spiel"]
T5["spiel"] --> T6["parameters"]
T6["parameters"] --> T7["sparse"]
T7["sparse"] --> T8["terms"]
T8["terms"] --> T9["indices"]
T9["indices"] --> T10["deltas"]
T10["deltas"] --> T11["sparse fine-tuning"]
T11["sparse fine-tuning"] --> T12["in terms"]
T12["in terms"] --> T13["terms of"]
T13["terms of"] --> T14["parameter-efficient"]
T14["parameter-efficient"] --> T15["methods"]
π Exploring and Evaluating Personalized Models for Code Generation
Authors: Andrei Zlotchevski, Dawn Drain, Alexey Svyatkovskiy, Colin Clement, Neel Sundaresan, Michele Tufano
Date: ### 20 Sep 2022
Word Count (Title): 8 | Word Count (Summary): 226
High Info Terms: model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
ROUGE Score: 6.64%
π€ TTF Read Aloud
- Title: Exploring and Evaluating Personalized Models for Code Generation
- Key Terms: model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
- ROUGE: 6.64%
Mermaid Graph of Key Concepts
flowchart TD
T1["model"] --> T2["fine-tuning"]
T2["fine-tuning"] --> T3["we"]
T3["we"] --> T4["which"]
T4["which"] --> T5["are"]
T5["are"] --> T6["code"]
T6["code"] --> T7["evaluate"]
T7["evaluate"] --> T8["parameters"]
T8["parameters"] --> T9["large"]
T9["large"] --> T10["transformer"]
T10["transformer"] --> T11["modeling"]
T11["modeling"] --> T12["learning"]
T12["learning"] --> T13["token"]
T13["token"] --> T14["generalization"]
T14["generalization"] --> T15["personalization"]
π UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory
Authors: Haiwen Diao, Bo Wan, Ying Zhang, Xu Jia, Huchuan Lu, Long Chen
Date: ### 28 Aug 2023
Word Count (Title): 12 | Word Count (Summary): 225
High Info Terms: petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
ROUGE Score: 6.67%
π€ TTF Read Aloud
- Title: UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory
- Key Terms: petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
- ROUGE: 6.67%
Mermaid Graph of Key Concepts
flowchart TD
T1["petl"] --> T2["unipt"]
T2["unipt"] --> T3["pre-trained"]
T3["pre-trained"] --> T4["methods"]
T4["methods"] --> T5["we"]
T5["we"] --> T6["parallel"]
T6["parallel"] --> T7["that"]
T7["that"] --> T8["petl methods"]
T8["petl methods"] --> T9["achieve"]
T9["achieve"] --> T10["performance"]
T10["performance"] --> T11["tasks"]
T11["tasks"] --> T12["parameters"]
T12["parameters"] --> T13["networks"]
T13["networks"] --> T14["is"]
T14["is"] --> T15["transfer"]
π Weaver: Foundation Models for Creative Writing
Authors: Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei Gao, Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu, Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng, Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao, Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu Tayier, Zhenyu Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang, Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, Yuchen Eleanor Jiang, and Wangchunshu Zhou
Date: ### 30 Jan 2024
Word Count (Title): 6 | Word Count (Summary): 237
High Info Terms: weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
ROUGE Score: 6.33%
π€ TTF Read Aloud
- Title: Weaver: Foundation Models for Creative Writing
- Key Terms: weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
- ROUGE: 6.33%
Mermaid Graph of Key Concepts
flowchart TD
T1["weaver"] --> T2["writing"]
T2["writing"] --> T3["llms"]
T3["llms"] --> T4["models"]
T4["models"] --> T5["we"]
T5["we"] --> T6["our"]
T6["our"] --> T7["family"]
T7["family"] --> T8["large"]
T8["large"] --> T9["language"]
T9["language"] --> T10["content"]
T10["content"] --> T11["creation"]
T11["creation"] --> T12["carefully"]
T12["carefully"] --> T13["improving"]
T13["improving"] --> T14["capabilities"]
T14["capabilities"] --> T15["professional"]
π PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models
Authors: Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James Henderson, Marzieh Saeidi, Lambert Mathias, Veselin Stoyanov, and Majid Yazdani
Date: ### 26 Apr 2022
Word Count (Title): 9 | Word Count (Summary): 184
High Info Terms: few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
ROUGE Score: 8.15%
π€ TTF Read Aloud
- Title: PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models
- Key Terms: few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
- ROUGE: 8.15%
Mermaid Graph of Key Concepts
flowchart TD
T1["few-shot"] --> T2["fine-tuning"]
T2["fine-tuning"] --> T3["that"]
T3["that"] --> T4["perfect"]
T4["perfect"] --> T5["we"]
T5["we"] --> T6["which"]
T6["which"] --> T7["methods"]
T7["methods"] --> T8["plms"]
T8["plms"] --> T9["engineered"]
T9["engineered"] --> T10["prompts"]
T10["prompts"] --> T11["verbalizers"]
T11["verbalizers"] --> T12["new"]
T12["new"] --> T13["task"]
T13["task"] --> T14["can"]
T14["can"] --> T15["simple"]
π AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Authors: Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
Date: ### 02 Nov 2022
Word Count (Title): 6 | Word Count (Summary): 191
High Info Terms: fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
ROUGE Score: 7.85%
π€ TTF Read Aloud
- Title: AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
- Key Terms: fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
- ROUGE: 7.85%
Mermaid Graph of Key Concepts
flowchart TD
T1["fine-tuning"] --> T2["peft"]
T2["peft"] --> T3["plm"]
T3["plm"] --> T4["adamix"]
T4["adamix"] --> T5["tasks"]
T5["tasks"] --> T6["parameters"]
T6["parameters"] --> T7["we"]
T7["we"] --> T8["method"]
T8["method"] --> T9["that"]
T9["that"] --> T10["mixture"]
T10["mixture"] --> T11["the plm"]
T11["the plm"] --> T12["peft method"]
T12["peft method"] --> T13["a mixture"]
T13["a mixture"] --> T14["mixture of"]
T14["mixture of"] --> T15["large"]
π AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
Authors: Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
Date: ### 02 Nov 2022
Word Count (Title): 6 | Word Count (Summary): 191
High Info Terms: fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
ROUGE Score: 7.85%
π€ TTF Read Aloud
- Title: AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning
- Key Terms: fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
- ROUGE: 7.85%
Mermaid Graph of Key Concepts
flowchart TD
T1["fine-tuning"] --> T2["peft"]
T2["peft"] --> T3["plm"]
T3["plm"] --> T4["adamix"]
T4["adamix"] --> T5["tasks"]
T5["tasks"] --> T6["parameters"]
T6["parameters"] --> T7["we"]
T7["we"] --> T8["method"]
T8["method"] --> T9["that"]
T9["that"] --> T10["mixture"]
T10["mixture"] --> T11["the plm"]
T11["the plm"] --> T12["peft method"]
T12["peft method"] --> T13["a mixture"]
T13["a mixture"] --> T14["mixture of"]
T14["mixture of"] --> T15["large"]
π ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization
Authors: Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal
Date: ### 22 Nov 2023
Word Count (Title): 11 | Word Count (Summary): 247
High Info Terms: compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
ROUGE Score: 6.07%
π€ TTF Read Aloud
- Title: ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization
- Key Terms: compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
- ROUGE: 6.07%
Mermaid Graph of Key Concepts
flowchart TD
T1["compeft"] --> T2["models"]
T2["models"] --> T3["peft"]
T3["peft"] --> T4["we"]
T4["we"] --> T5["expert"]
T5["expert"] --> T6["that"]
T6["that"] --> T7["expert models"]
T7["expert models"] --> T8["it"]
T8["it"] --> T9["model"]
T9["model"] --> T10["generalization"]
T10["generalization"] --> T11["by"]
T11["by"] --> T12["size"]
T12["size"] --> T13["performance"]
T13["performance"] --> T14["show"]
T14["show"] --> T15["we show"]
π Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models
Authors: Haoran Zhao and Jake Ryland Williams
Date: ### 18 Nov 2023
Word Count (Title): 16 | Word Count (Summary): 237
High Info Terms: bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
ROUGE Score: 6.33%
π€ TTF Read Aloud
- Title: Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models
- Key Terms: bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
- ROUGE: 6.33%
Mermaid Graph of Key Concepts
flowchart TD
T1["bit-cipher"] --> T2["while"]
T2["while"] --> T3["word"]
T3["word"] --> T4["that"]
T4["that"] --> T5["we"]
T5["we"] --> T6["embeddings"]
T6["embeddings"] --> T7["efficiency"]
T7["efficiency"] --> T8["experiments"]
T8["experiments"] --> T9["training"]
T9["training"] --> T10["classic"]
T10["classic"] --> T11["from"]
T11["from"] --> T12["convergence"]
T12["convergence"] --> T13["glove"]
T13["glove"] --> T14["word2vec"]
T14["word2vec"] --> T15["process"]
π ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models
Authors: Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang, Kang Li, Qicheng Lao
Date: ### 30 May 2023
Word Count (Title): 12 | Word Count (Summary): 275
High Info Terms: prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
ROUGE Score: 5.45%
π€ TTF Read Aloud
- Title: ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models
- Key Terms: prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
- ROUGE: 5.45%
Mermaid Graph of Key Concepts
flowchart TD
T1["prompt"] --> T2["tuning"]
T2["tuning"] --> T3["text"]
T3["text"] --> T4["encoder"]
T4["encoder"] --> T5["text encoder"]
T5["text encoder"] --> T6["methods"]
T6["methods"] --> T7["embeddings"]
T7["embeddings"] --> T8["approach"]
T8["approach"] --> T9["our"]
T9["our"] --> T10["the text"]
T10["the text"] --> T11["can"]
T11["can"] --> T12["by"]
T12["by"] --> T13["is"]
T13["is"] --> T14["we"]
T14["we"] --> T15["as"]
π LeTI: Learning to Generate from Textual Interactions
Authors: Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
Date: ### 17 May 2023
Word Count (Title): 7 | Word Count (Summary): 279
High Info Terms: feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
ROUGE Score: 5.38%
π€ TTF Read Aloud
- Title: LeTI: Learning to Generate from Textual Interactions
- Key Terms: feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
- ROUGE: 5.38%
Mermaid Graph of Key Concepts
flowchart TD
T1["feedback"] --> T2["leti"]
T2["leti"] --> T3["textual"]
T3["textual"] --> T4["code"]
T4["code"] --> T5["language"]
T5["language"] --> T6["lms"]
T6["lms"] --> T7["that"]
T7["that"] --> T8["generation"]
T8["generation"] --> T9["natural"]
T9["natural"] --> T10["performance"]
T10["performance"] --> T11["textual feedback"]
T11["textual feedback"] --> T12["outputs"]
T12["outputs"] --> T13["from"]
T13["from"] --> T14["we"]
T14["we"] --> T15["binary"]
π Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks
Authors: Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, Zsolt Kira
Date: ### 07 Oct 2022
Word Count (Title): 8 | Word Count (Summary): 207
High Info Terms: tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
ROUGE Score: 7.25%
π€ TTF Read Aloud
- Title: Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks
- Key Terms: tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
- ROUGE: 7.25%
Mermaid Graph of Key Concepts
flowchart TD
T1["tasks"] --> T2["methods"]
T2["methods"] --> T3["vision"]
T3["vision"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["parameter-efficient"]
T5["parameter-efficient"] --> T6["different"]
T6["different"] --> T7["parameters"]
T7["parameters"] --> T8["existing"]
T8["existing"] --> T9["vision tasks"]
T9["vision tasks"] --> T10["while"]
T10["while"] --> T11["transformers"]
T11["transformers"] --> T12["this"]
T12["this"] --> T13["trainable"]
T13["trainable"] --> T14["different tasks"]
T14["different tasks"] --> T15["tasks with"]
π DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
Authors: Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, Yu Cheng
Date: ### 24 May 2023
Word Count (Title): 9 | Word Count (Summary): 239
High Info Terms: by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
ROUGE Score: 6.28%
π€ TTF Read Aloud
- Title: DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
- Key Terms: by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
- ROUGE: 6.28%
Mermaid Graph of Key Concepts
flowchart TD
T1["by"] --> T2["pre-trained"]
T2["pre-trained"] --> T3["models"]
T3["models"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["as"]
T5["as"] --> T6["two"]
T6["two"] --> T7["fine-tuned"]
T7["fine-tuned"] --> T8["model"]
T8["model"] --> T9["dsee"]
T9["dsee"] --> T10["language"]
T10["language"] --> T11["starting"]
T11["starting"] --> T12["point"]
T12["point"] --> T13["towards"]
T13["towards"] --> T14["downstream"]
T14["downstream"] --> T15["pain"]
π SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning
Authors: M Saiful Bari, Aston Zhang, Shuai Zheng, Xingjian Shi, Yi Zhu, Shafiq Joty, Mu Li
Date: ### 21 Dec 2022
Word Count (Title): 8 | Word Count (Summary): 147
High Info Terms: spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
ROUGE Score: 10.2%
π€ TTF Read Aloud
- Title: SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning
- Key Terms: spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
- ROUGE: 10.2%
Mermaid Graph of Key Concepts
flowchart TD
T1["spt"] --> T2["fine-tuning"]
T2["fine-tuning"] --> T3["prompts"]
T3["prompts"] --> T4["generalization"]
T4["generalization"] --> T5["prompt"]
T5["prompt"] --> T6["tuning"]
T6["tuning"] --> T7["datasets"]
T7["datasets"] --> T8["prompt tuning"]
T8["prompt tuning"] --> T9["language"]
T9["language"] --> T10["can"]
T10["can"] --> T11["multitask"]
T11["multitask"] --> T12["prompted"]
T12["prompted"] --> T13["learning"]
T13["learning"] --> T14["tasks"]
T14["tasks"] --> T15["methods"]
π HyperTuning: Toward Adapting Large Language Models without Back-propagation
Authors: Jason Phang, Yi Mao, Pengcheng He, Weizhu Chen
Date: ### 22 Nov 2022
Word Count (Title): 8 | Word Count (Summary): 164
High Info Terms: that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
ROUGE Score: 9.15%
π€ TTF Read Aloud
- Title: HyperTuning: Toward Adapting Large Language Models without Back-propagation
- Key Terms: that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
- ROUGE: 9.15%
Mermaid Graph of Key Concepts
flowchart TD
T1["that"] --> T2["parameters"]
T2["parameters"] --> T3["we"]
T3["we"] --> T4["language"]
T4["language"] --> T5["fine-tuning"]
T5["fine-tuning"] --> T6["large"]
T6["large"] --> T7["tasks"]
T7["tasks"] --> T8["can"]
T8["can"] --> T9["hypertuning"]
T9["hypertuning"] --> T10["model"]
T10["model"] --> T11["hypermodel"]
T11["hypermodel"] --> T12["generate"]
T12["generate"] --> T13["hypert5"]
T13["hypert5"] --> T14["parameters for"]
T14["parameters for"] --> T15["models"]