File size: 31,173 Bytes
7f08562 e97884e 183fff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
---
title: TorchTransformers NLP CV SFT
emoji: π
colorFrom: red
colorTo: gray
sdk: streamlit
sdk_version: 1.43.1
app_file: app.py
pinned: false
license: mit
short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
---
Deep Research Evaluator:
https://huggingface.co/spaces/awacke1/DeepResearchEvaluator
With torch, transformers, and specialized fine tuning of small models
1. We can build to specification of input dataset and
2. Easily create RAG agents with fine tuned models using duckduckgo and smolagents.
3. Show state of art SFT for agentic RAG to help manage models and gain ROI.
# Detailed Research Paper Summary
## π [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners](https://arxiv.org/abs/2110.06274)
**Authors:** Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
**Date:** ### 18 May 2022
**Word Count (Title):** 8 | **Word Count (Summary):** 219
**Links:** [Abstract](https://arxiv.org/abs/2110.06274)) | [PDF](https://arxiv.org/pdf/2110.06274).pdf)
**High Info Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
**ROUGE Score:** 6.85%
### π€ TTF Read Aloud
- **Title:** [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners](https://arxiv.org/abs/2110.06274)
- **Key Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
- **ROUGE:** 6.85%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["list"] --> T2["is"]
T2["is"] --> T3["self-training"]
T3["self-training"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["parameters"]
T5["parameters"] --> T6["we"]
T6["we"] --> T7["few-shot"]
T7["few-shot"] --> T8["learning"]
T8["learning"] --> T9["over"]
T9["over"] --> T10["that"]
T10["that"] --> T11["prompt-based"]
T11["prompt-based"] --> T12["fn"]
T12["fn"] --> T13["use"]
T13["use"] --> T14["as"]
T14["as"] --> T15["model"]
```
---
## π [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
**Authors:** Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, Ivan Vuli\'c
**Date:** ### 09 Feb 2023
**Word Count (Title):** 6 | **Word Count (Summary):** 218
**Links:** [Abstract](https://arxiv.org/abs/2110.07560)) | [PDF](https://arxiv.org/pdf/2110.07560).pdf)
**High Info Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
**ROUGE Score:** 6.88%
### π€ TTF Read Aloud
- **Title:** [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
- **Key Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
- **ROUGE:** 6.88%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["fine-tuning"] --> T2["model"]
T2["model"] --> T3["adapters"]
T3["adapters"] --> T4["language"]
T4["language"] --> T5["we"]
T5["we"] --> T6["masks"]
T6["masks"] --> T7["sparse"]
T7["sparse"] --> T8["be"]
T8["be"] --> T9["both"]
T9["both"] --> T10["in a"]
T10["in a"] --> T11["parameters"]
T11["parameters"] --> T12["large"]
T12["large"] --> T13["pretrained"]
T13["pretrained"] --> T14["transfer"]
T14["transfer"] --> T15["prevent"]
```
---
## π [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
**Authors:** Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J. Clark, Brett H. Meyer, Warren J. Gross
**Date:** ### 03 Aug 2022
**Word Count (Title):** 8 | **Word Count (Summary):** 131
**Links:** [Abstract](https://arxiv.org/abs/2208.02070)) | [PDF](https://arxiv.org/pdf/2208.02070).pdf)
**High Info Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
**ROUGE Score:** 11.45%
### π€ TTF Read Aloud
- **Title:** [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
- **Key Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
- **ROUGE:** 11.45%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["fine-tuning"] --> T2["training"]
T2["training"] --> T3["learners"]
T3["learners"] --> T4["models"]
T4["models"] --> T5["works"]
T5["works"] --> T6["learner"]
T6["learner"] --> T7["modules"]
T7["modules"] --> T8["methods"]
T8["methods"] --> T9["that"]
T9["that"] --> T10["convergence"]
T10["convergence"] --> T11["resource"]
T11["resource"] --> T12["utilization"]
T12["utilization"] --> T13["by"]
T13["by"] --> T14["parameters"]
T14["parameters"] --> T15["learner modules"]
```
---
## π [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
**Authors:** Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul Bhotika, Stefano Soatto
**Date:** ### 30 Mar 2022
**Word Count (Title):** 7 | **Word Count (Summary):** 183
**Links:** [Abstract](https://arxiv.org/abs/2203.16708)) | [PDF](https://arxiv.org/pdf/2203.16708).pdf)
**High Info Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
**ROUGE Score:** 8.2%
### π€ TTF Read Aloud
- **Title:** [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
- **Key Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
- **ROUGE:** 8.2%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["tasks"] --> T2["taps"]
T2["taps"] --> T3["model"]
T3["model"] --> T4["downstream"]
T4["downstream"] --> T5["task"]
T5["task"] --> T6["base"]
T6["base"] --> T7["task-specific"]
T7["task-specific"] --> T8["layers"]
T8["layers"] --> T9["while"]
T9["while"] --> T10["downstream tasks"]
T10["downstream tasks"] --> T11["base model"]
T11["base model"] --> T12["models"]
T12["models"] --> T13["learning"]
T13["learning"] --> T14["fine-tuning"]
T14["fine-tuning"] --> T15["is"]
```
---
## π [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture](https://arxiv.org/abs/2401.08406)
**Authors:** Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha, Roberto de M. Estev\~ao Filho, Todd Hendry, Daniel Holstein, Jennifer Marsman, Nick Mecklenburg, Sara Malvar, Leonardo O. Nunes, Rafael Padilha, Morris Sharp, Bruno Silva, Swati Sharma, Vijay Aski, Ranveer Chandra
**Date:** ### 30 Jan 2024
**Word Count (Title):** 11 | **Word Count (Summary):** 281
**Links:** [Abstract](https://arxiv.org/abs/2401.08406)) | [PDF](https://arxiv.org/pdf/2401.08406).pdf)
**High Info Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
**ROUGE Score:** 5.34%
### π€ TTF Read Aloud
- **Title:** [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture](https://arxiv.org/abs/2401.08406)
- **Key Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
- **ROUGE:** 5.34%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["fine-tuning"] --> T2["we"]
T2["we"] --> T3["rag"]
T3["rag"] --> T4["llms"]
T4["llms"] --> T5["pipeline"]
T5["pipeline"] --> T6["p"]
T6["p"] --> T7["rag and"]
T7["rag and"] --> T8["are"]
T8["are"] --> T9["knowledge"]
T9["knowledge"] --> T10["model"]
T10["model"] --> T11["our"]
T11["our"] --> T12["from"]
T12["from"] --> T13["results"]
T13["results"] --> T14["and fine-tuning"]
T14["and fine-tuning"] --> T15["which"]
```
---
## π [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
**Authors:** Alan Ansell and Ivan Vuli\'c and Hannah Sterz and Anna Korhonen and Edoardo M. Ponti
**Date:** ### 02 Feb 2024
**Word Count (Title):** 7 | **Word Count (Summary):** 219
**Links:** [Abstract](https://arxiv.org/abs/2401.16405)) | [PDF](https://arxiv.org/pdf/2401.16405).pdf)
**High Info Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
**ROUGE Score:** 6.85%
### π€ TTF Read Aloud
- **Title:** [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
- **Key Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
- **ROUGE:** 6.85%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["we"] --> T2["their"]
T2["their"] --> T3["llms"]
T3["llms"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["spiel"]
T5["spiel"] --> T6["parameters"]
T6["parameters"] --> T7["sparse"]
T7["sparse"] --> T8["terms"]
T8["terms"] --> T9["indices"]
T9["indices"] --> T10["deltas"]
T10["deltas"] --> T11["sparse fine-tuning"]
T11["sparse fine-tuning"] --> T12["in terms"]
T12["in terms"] --> T13["terms of"]
T13["terms of"] --> T14["parameter-efficient"]
T14["parameter-efficient"] --> T15["methods"]
```
---
## π [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
**Authors:** Andrei Zlotchevski, Dawn Drain, Alexey Svyatkovskiy, Colin Clement, Neel Sundaresan, Michele Tufano
**Date:** ### 20 Sep 2022
**Word Count (Title):** 8 | **Word Count (Summary):** 226
**Links:** [Abstract](https://arxiv.org/abs/2208.13928)) | [PDF](https://arxiv.org/pdf/2208.13928).pdf)
**High Info Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
**ROUGE Score:** 6.64%
### π€ TTF Read Aloud
- **Title:** [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
- **Key Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
- **ROUGE:** 6.64%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["model"] --> T2["fine-tuning"]
T2["fine-tuning"] --> T3["we"]
T3["we"] --> T4["which"]
T4["which"] --> T5["are"]
T5["are"] --> T6["code"]
T6["code"] --> T7["evaluate"]
T7["evaluate"] --> T8["parameters"]
T8["parameters"] --> T9["large"]
T9["large"] --> T10["transformer"]
T10["transformer"] --> T11["modeling"]
T11["modeling"] --> T12["learning"]
T12["learning"] --> T13["token"]
T13["token"] --> T14["generalization"]
T14["generalization"] --> T15["personalization"]
```
---
## π [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory](https://arxiv.org/abs/2308.14316)
**Authors:** Haiwen Diao, Bo Wan, Ying Zhang, Xu Jia, Huchuan Lu, Long Chen
**Date:** ### 28 Aug 2023
**Word Count (Title):** 12 | **Word Count (Summary):** 225
**Links:** [Abstract](https://arxiv.org/abs/2308.14316)) | [PDF](https://arxiv.org/pdf/2308.14316).pdf)
**High Info Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
**ROUGE Score:** 6.67%
### π€ TTF Read Aloud
- **Title:** [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory](https://arxiv.org/abs/2308.14316)
- **Key Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
- **ROUGE:** 6.67%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["petl"] --> T2["unipt"]
T2["unipt"] --> T3["pre-trained"]
T3["pre-trained"] --> T4["methods"]
T4["methods"] --> T5["we"]
T5["we"] --> T6["parallel"]
T6["parallel"] --> T7["that"]
T7["that"] --> T8["petl methods"]
T8["petl methods"] --> T9["achieve"]
T9["achieve"] --> T10["performance"]
T10["performance"] --> T11["tasks"]
T11["tasks"] --> T12["parameters"]
T12["parameters"] --> T13["networks"]
T13["networks"] --> T14["is"]
T14["is"] --> T15["transfer"]
```
---
## π [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
**Authors:** Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin Wang, Zhaowei Gao, Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu, Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng, Teng Yu, Gangan Ma, Han Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao, Jing Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu Tayier, Zhenyu Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang, Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, Yuchen Eleanor Jiang, and Wangchunshu Zhou
**Date:** ### 30 Jan 2024
**Word Count (Title):** 6 | **Word Count (Summary):** 237
**Links:** [Abstract](https://arxiv.org/abs/2401.17268)) | [PDF](https://arxiv.org/pdf/2401.17268).pdf)
**High Info Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
**ROUGE Score:** 6.33%
### π€ TTF Read Aloud
- **Title:** [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
- **Key Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
- **ROUGE:** 6.33%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["weaver"] --> T2["writing"]
T2["writing"] --> T3["llms"]
T3["llms"] --> T4["models"]
T4["models"] --> T5["we"]
T5["we"] --> T6["our"]
T6["our"] --> T7["family"]
T7["family"] --> T8["large"]
T8["large"] --> T9["language"]
T9["language"] --> T10["content"]
T10["content"] --> T11["creation"]
T11["creation"] --> T12["carefully"]
T12["carefully"] --> T13["improving"]
T13["improving"] --> T14["capabilities"]
T14["capabilities"] --> T15["professional"]
```
---
## π [PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models](https://arxiv.org/abs/2204.01172)
**Authors:** Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James Henderson, Marzieh Saeidi, Lambert Mathias, Veselin Stoyanov, and Majid Yazdani
**Date:** ### 26 Apr 2022
**Word Count (Title):** 9 | **Word Count (Summary):** 184
**Links:** [Abstract](https://arxiv.org/abs/2204.01172)) | [PDF](https://arxiv.org/pdf/2204.01172).pdf)
**High Info Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
**ROUGE Score:** 8.15%
### π€ TTF Read Aloud
- **Title:** [PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models](https://arxiv.org/abs/2204.01172)
- **Key Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
- **ROUGE:** 8.15%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["few-shot"] --> T2["fine-tuning"]
T2["fine-tuning"] --> T3["that"]
T3["that"] --> T4["perfect"]
T4["perfect"] --> T5["we"]
T5["we"] --> T6["which"]
T6["which"] --> T7["methods"]
T7["methods"] --> T8["plms"]
T8["plms"] --> T9["engineered"]
T9["engineered"] --> T10["prompts"]
T10["prompts"] --> T11["verbalizers"]
T11["verbalizers"] --> T12["new"]
T12["new"] --> T13["task"]
T13["task"] --> T14["can"]
T14["can"] --> T15["simple"]
```
---
## π [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
**Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
**Date:** ### 02 Nov 2022
**Word Count (Title):** 6 | **Word Count (Summary):** 191
**Links:** [Abstract](https://arxiv.org/abs/2205.12410)) | [PDF](https://arxiv.org/pdf/2205.12410).pdf)
**High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
**ROUGE Score:** 7.85%
### π€ TTF Read Aloud
- **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
- **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
- **ROUGE:** 7.85%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["fine-tuning"] --> T2["peft"]
T2["peft"] --> T3["plm"]
T3["plm"] --> T4["adamix"]
T4["adamix"] --> T5["tasks"]
T5["tasks"] --> T6["parameters"]
T6["parameters"] --> T7["we"]
T7["we"] --> T8["method"]
T8["method"] --> T9["that"]
T9["that"] --> T10["mixture"]
T10["mixture"] --> T11["the plm"]
T11["the plm"] --> T12["peft method"]
T12["peft method"] --> T13["a mixture"]
T13["a mixture"] --> T14["mixture of"]
T14["mixture of"] --> T15["large"]
```
---
## π [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
**Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao
**Date:** ### 02 Nov 2022
**Word Count (Title):** 6 | **Word Count (Summary):** 191
**Links:** [Abstract](https://arxiv.org/abs/2210.17451)) | [PDF](https://arxiv.org/pdf/2210.17451).pdf)
**High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
**ROUGE Score:** 7.85%
### π€ TTF Read Aloud
- **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
- **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
- **ROUGE:** 7.85%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["fine-tuning"] --> T2["peft"]
T2["peft"] --> T3["plm"]
T3["plm"] --> T4["adamix"]
T4["adamix"] --> T5["tasks"]
T5["tasks"] --> T6["parameters"]
T6["parameters"] --> T7["we"]
T7["we"] --> T8["method"]
T8["method"] --> T9["that"]
T9["that"] --> T10["mixture"]
T10["mixture"] --> T11["the plm"]
T11["the plm"] --> T12["peft method"]
T12["peft method"] --> T13["a mixture"]
T13["a mixture"] --> T14["mixture of"]
T14["mixture of"] --> T15["large"]
```
---
## π [ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
**Authors:** Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal
**Date:** ### 22 Nov 2023
**Word Count (Title):** 11 | **Word Count (Summary):** 247
**Links:** [Abstract](https://arxiv.org/abs/2311.13171)) | [PDF](https://arxiv.org/pdf/2311.13171).pdf)
**High Info Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
**ROUGE Score:** 6.07%
### π€ TTF Read Aloud
- **Title:** [ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
- **Key Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
- **ROUGE:** 6.07%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["compeft"] --> T2["models"]
T2["models"] --> T3["peft"]
T3["peft"] --> T4["we"]
T4["we"] --> T5["expert"]
T5["expert"] --> T6["that"]
T6["that"] --> T7["expert models"]
T7["expert models"] --> T8["it"]
T8["it"] --> T9["model"]
T9["model"] --> T10["generalization"]
T10["generalization"] --> T11["by"]
T11["by"] --> T12["size"]
T12["size"] --> T13["performance"]
T13["performance"] --> T14["show"]
T14["show"] --> T15["we show"]
```
---
## π [Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
**Authors:** Haoran Zhao and Jake Ryland Williams
**Date:** ### 18 Nov 2023
**Word Count (Title):** 16 | **Word Count (Summary):** 237
**Links:** [Abstract](https://arxiv.org/abs/2311.11012)) | [PDF](https://arxiv.org/pdf/2311.11012).pdf)
**High Info Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
**ROUGE Score:** 6.33%
### π€ TTF Read Aloud
- **Title:** [Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
- **Key Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
- **ROUGE:** 6.33%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["bit-cipher"] --> T2["while"]
T2["while"] --> T3["word"]
T3["word"] --> T4["that"]
T4["that"] --> T5["we"]
T5["we"] --> T6["embeddings"]
T6["embeddings"] --> T7["efficiency"]
T7["efficiency"] --> T8["experiments"]
T8["experiments"] --> T9["training"]
T9["training"] --> T10["classic"]
T10["classic"] --> T11["from"]
T11["from"] --> T12["convergence"]
T12["convergence"] --> T13["glove"]
T13["glove"] --> T14["word2vec"]
T14["word2vec"] --> T15["process"]
```
---
## π [ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models](https://arxiv.org/abs/2305.18993)
**Authors:** Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang, Kang Li, Qicheng Lao
**Date:** ### 30 May 2023
**Word Count (Title):** 12 | **Word Count (Summary):** 275
**Links:** [Abstract](https://arxiv.org/abs/2305.18993)) | [PDF](https://arxiv.org/pdf/2305.18993).pdf)
**High Info Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
**ROUGE Score:** 5.45%
### π€ TTF Read Aloud
- **Title:** [ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models](https://arxiv.org/abs/2305.18993)
- **Key Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
- **ROUGE:** 5.45%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["prompt"] --> T2["tuning"]
T2["tuning"] --> T3["text"]
T3["text"] --> T4["encoder"]
T4["encoder"] --> T5["text encoder"]
T5["text encoder"] --> T6["methods"]
T6["methods"] --> T7["embeddings"]
T7["embeddings"] --> T8["approach"]
T8["approach"] --> T9["our"]
T9["our"] --> T10["the text"]
T10["the text"] --> T11["can"]
T11["can"] --> T12["by"]
T12["by"] --> T13["is"]
T13["is"] --> T14["we"]
T14["we"] --> T15["as"]
```
---
## π [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
**Authors:** Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji
**Date:** ### 17 May 2023
**Word Count (Title):** 7 | **Word Count (Summary):** 279
**Links:** [Abstract](https://arxiv.org/abs/2305.10314)) | [PDF](https://arxiv.org/pdf/2305.10314).pdf)
**High Info Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
**ROUGE Score:** 5.38%
### π€ TTF Read Aloud
- **Title:** [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
- **Key Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
- **ROUGE:** 5.38%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["feedback"] --> T2["leti"]
T2["leti"] --> T3["textual"]
T3["textual"] --> T4["code"]
T4["code"] --> T5["language"]
T5["language"] --> T6["lms"]
T6["lms"] --> T7["that"]
T7["that"] --> T8["generation"]
T8["generation"] --> T9["natural"]
T9["natural"] --> T10["performance"]
T10["performance"] --> T11["textual feedback"]
T11["textual feedback"] --> T12["outputs"]
T12["outputs"] --> T13["from"]
T13["from"] --> T14["we"]
T14["we"] --> T15["binary"]
```
---
## π [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks](https://arxiv.org/abs/2210.03265)
**Authors:** Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, Zsolt Kira
**Date:** ### 07 Oct 2022
**Word Count (Title):** 8 | **Word Count (Summary):** 207
**Links:** [Abstract](https://arxiv.org/abs/2210.03265)) | [PDF](https://arxiv.org/pdf/2210.03265).pdf)
**High Info Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
**ROUGE Score:** 7.25%
### π€ TTF Read Aloud
- **Title:** [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks](https://arxiv.org/abs/2210.03265)
- **Key Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
- **ROUGE:** 7.25%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["tasks"] --> T2["methods"]
T2["methods"] --> T3["vision"]
T3["vision"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["parameter-efficient"]
T5["parameter-efficient"] --> T6["different"]
T6["different"] --> T7["parameters"]
T7["parameters"] --> T8["existing"]
T8["existing"] --> T9["vision tasks"]
T9["vision tasks"] --> T10["while"]
T10["while"] --> T11["transformers"]
T11["transformers"] --> T12["this"]
T12["this"] --> T13["trainable"]
T13["trainable"] --> T14["different tasks"]
T14["different tasks"] --> T15["tasks with"]
```
---
## π [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models](https://arxiv.org/abs/2111.00160)
**Authors:** Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, Yu Cheng
**Date:** ### 24 May 2023
**Word Count (Title):** 9 | **Word Count (Summary):** 239
**Links:** [Abstract](https://arxiv.org/abs/2111.00160)) | [PDF](https://arxiv.org/pdf/2111.00160).pdf)
**High Info Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
**ROUGE Score:** 6.28%
### π€ TTF Read Aloud
- **Title:** [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models](https://arxiv.org/abs/2111.00160)
- **Key Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
- **ROUGE:** 6.28%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["by"] --> T2["pre-trained"]
T2["pre-trained"] --> T3["models"]
T3["models"] --> T4["fine-tuning"]
T4["fine-tuning"] --> T5["as"]
T5["as"] --> T6["two"]
T6["two"] --> T7["fine-tuned"]
T7["fine-tuned"] --> T8["model"]
T8["model"] --> T9["dsee"]
T9["dsee"] --> T10["language"]
T10["language"] --> T11["starting"]
T11["starting"] --> T12["point"]
T12["point"] --> T13["towards"]
T13["towards"] --> T14["downstream"]
T14["downstream"] --> T15["pain"]
```
---
## π [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
**Authors:** M Saiful Bari, Aston Zhang, Shuai Zheng, Xingjian Shi, Yi Zhu, Shafiq Joty, Mu Li
**Date:** ### 21 Dec 2022
**Word Count (Title):** 8 | **Word Count (Summary):** 147
**Links:** [Abstract](https://arxiv.org/abs/2212.10929)) | [PDF](https://arxiv.org/pdf/2212.10929).pdf)
**High Info Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
**ROUGE Score:** 10.2%
### π€ TTF Read Aloud
- **Title:** [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
- **Key Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
- **ROUGE:** 10.2%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["spt"] --> T2["fine-tuning"]
T2["fine-tuning"] --> T3["prompts"]
T3["prompts"] --> T4["generalization"]
T4["generalization"] --> T5["prompt"]
T5["prompt"] --> T6["tuning"]
T6["tuning"] --> T7["datasets"]
T7["datasets"] --> T8["prompt tuning"]
T8["prompt tuning"] --> T9["language"]
T9["language"] --> T10["can"]
T10["can"] --> T11["multitask"]
T11["multitask"] --> T12["prompted"]
T12["prompted"] --> T13["learning"]
T13["learning"] --> T14["tasks"]
T14["tasks"] --> T15["methods"]
```
---
## π [HyperTuning: Toward Adapting Large Language Models without Back-propagation](https://arxiv.org/abs/2211.12485)
**Authors:** Jason Phang, Yi Mao, Pengcheng He, Weizhu Chen
**Date:** ### 22 Nov 2022
**Word Count (Title):** 8 | **Word Count (Summary):** 164
**Links:** [Abstract](https://arxiv.org/abs/2211.12485)) | [PDF](https://arxiv.org/pdf/2211.12485).pdf)
**High Info Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
**ROUGE Score:** 9.15%
### π€ TTF Read Aloud
- **Title:** [HyperTuning: Toward Adapting Large Language Models without Back-propagation](https://arxiv.org/abs/2211.12485)
- **Key Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
- **ROUGE:** 9.15%
#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
T1["that"] --> T2["parameters"]
T2["parameters"] --> T3["we"]
T3["we"] --> T4["language"]
T4["language"] --> T5["fine-tuning"]
T5["fine-tuning"] --> T6["large"]
T6["large"] --> T7["tasks"]
T7["tasks"] --> T8["can"]
T8["can"] --> T9["hypertuning"]
T9["hypertuning"] --> T10["model"]
T10["model"] --> T11["hypermodel"]
T11["hypermodel"] --> T12["generate"]
T12["generate"] --> T13["hypert5"]
T13["hypert5"] --> T14["parameters for"]
T14["parameters for"] --> T15["models"]
```
---
|