File size: 31,173 Bytes
7f08562
 
 
 
 
 
 
 
 
 
 
 
 
e97884e
 
 
 
 
 
 
 
 
 
183fff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
---
title: TorchTransformers NLP CV SFT
emoji: πŸš€
colorFrom: red
colorTo: gray
sdk: streamlit
sdk_version: 1.43.1
app_file: app.py
pinned: false
license: mit
short_description: Torch and Transformers Demonstration - SFT NLP and CV ML
---

Deep Research Evaluator:
https://huggingface.co/spaces/awacke1/DeepResearchEvaluator


With torch, transformers, and specialized fine tuning of small models 
1. We can build to specification of input dataset and 
2. Easily create RAG agents with fine tuned models using duckduckgo and smolagents.  
3. Show state of art SFT for agentic RAG to help manage models and gain ROI.



# Detailed Research Paper Summary


## πŸ“„ [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot  Learners](https://arxiv.org/abs/2110.06274)

**Authors:** Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed  Hassan Awadallah, Jianfeng Gao  
**Date:** ### 18 May 2022  
**Word Count (Title):** 8 | **Word Count (Summary):** 219  

**Links:** [Abstract](https://arxiv.org/abs/2110.06274)) | [PDF](https://arxiv.org/pdf/2110.06274).pdf)

**High Info Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model  
**ROUGE Score:** 6.85%

### 🎀 TTF Read Aloud
- **Title:** [LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot  Learners](https://arxiv.org/abs/2110.06274)
- **Key Terms:** list, is, self-training, fine-tuning, parameters, we, few-shot, learning, over, that, prompt-based, fn, use, as, model
- **ROUGE:** 6.85%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["list"] --> T2["is"]
    T2["is"] --> T3["self-training"]
    T3["self-training"] --> T4["fine-tuning"]
    T4["fine-tuning"] --> T5["parameters"]
    T5["parameters"] --> T6["we"]
    T6["we"] --> T7["few-shot"]
    T7["few-shot"] --> T8["learning"]
    T8["learning"] --> T9["over"]
    T9["over"] --> T10["that"]
    T10["that"] --> T11["prompt-based"]
    T11["prompt-based"] --> T12["fn"]
    T12["fn"] --> T13["use"]
    T13["use"] --> T14["as"]
    T14["as"] --> T15["model"]
```

---


## πŸ“„ [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)

**Authors:** Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, Ivan Vuli\'c  
**Date:** ### 09 Feb 2023  
**Word Count (Title):** 6 | **Word Count (Summary):** 218  

**Links:** [Abstract](https://arxiv.org/abs/2110.07560)) | [PDF](https://arxiv.org/pdf/2110.07560).pdf)

**High Info Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent  
**ROUGE Score:** 6.88%

### 🎀 TTF Read Aloud
- **Title:** [Composable Sparse Fine-Tuning for Cross-Lingual Transfer](https://arxiv.org/abs/2110.07560)
- **Key Terms:** fine-tuning, model, adapters, language, we, masks, sparse, be, both, in a, parameters, large, pretrained, transfer, prevent
- **ROUGE:** 6.88%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["fine-tuning"] --> T2["model"]
    T2["model"] --> T3["adapters"]
    T3["adapters"] --> T4["language"]
    T4["language"] --> T5["we"]
    T5["we"] --> T6["masks"]
    T6["masks"] --> T7["sparse"]
    T7["sparse"] --> T8["be"]
    T8["be"] --> T9["both"]
    T9["both"] --> T10["in a"]
    T10["in a"] --> T11["parameters"]
    T11["parameters"] --> T12["large"]
    T12["large"] --> T13["pretrained"]
    T13["pretrained"] --> T14["transfer"]
    T14["transfer"] --> T15["prevent"]
```

---


## πŸ“„ [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)

**Authors:** Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J.  Clark, Brett H. Meyer, Warren J. Gross  
**Date:** ### 03 Aug 2022  
**Word Count (Title):** 8 | **Word Count (Summary):** 131  

**Links:** [Abstract](https://arxiv.org/abs/2208.02070)) | [PDF](https://arxiv.org/pdf/2208.02070).pdf)

**High Info Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules  
**ROUGE Score:** 11.45%

### 🎀 TTF Read Aloud
- **Title:** [Efficient Fine-Tuning of Compressed Language Models with Learners](https://arxiv.org/abs/2208.02070)
- **Key Terms:** fine-tuning, training, learners, models, works, learner, modules, methods, that, convergence, resource, utilization, by, parameters, learner modules
- **ROUGE:** 11.45%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["fine-tuning"] --> T2["training"]
    T2["training"] --> T3["learners"]
    T3["learners"] --> T4["models"]
    T4["models"] --> T5["works"]
    T5["works"] --> T6["learner"]
    T6["learner"] --> T7["modules"]
    T7["modules"] --> T8["methods"]
    T8["methods"] --> T9["that"]
    T9["that"] --> T10["convergence"]
    T10["convergence"] --> T11["resource"]
    T11["resource"] --> T12["utilization"]
    T12["utilization"] --> T13["by"]
    T13["by"] --> T14["parameters"]
    T14["parameters"] --> T15["learner modules"]
```

---


## πŸ“„ [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)

**Authors:** Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran,  Charless Fowlkes, Rahul Bhotika, Stefano Soatto  
**Date:** ### 30 Mar 2022  
**Word Count (Title):** 7 | **Word Count (Summary):** 183  

**Links:** [Abstract](https://arxiv.org/abs/2203.16708)) | [PDF](https://arxiv.org/pdf/2203.16708).pdf)

**High Info Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is  
**ROUGE Score:** 8.2%

### 🎀 TTF Read Aloud
- **Title:** [Task Adaptive Parameter Sharing for Multi-Task Learning](https://arxiv.org/abs/2203.16708)
- **Key Terms:** tasks, taps, model, downstream, task, base, task-specific, layers, while, downstream tasks, base model, models, learning, fine-tuning, is
- **ROUGE:** 8.2%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["tasks"] --> T2["taps"]
    T2["taps"] --> T3["model"]
    T3["model"] --> T4["downstream"]
    T4["downstream"] --> T5["task"]
    T5["task"] --> T6["base"]
    T6["base"] --> T7["task-specific"]
    T7["task-specific"] --> T8["layers"]
    T8["layers"] --> T9["while"]
    T9["while"] --> T10["downstream tasks"]
    T10["downstream tasks"] --> T11["base model"]
    T11["base model"] --> T12["models"]
    T12["models"] --> T13["learning"]
    T13["learning"] --> T14["fine-tuning"]
    T14["fine-tuning"] --> T15["is"]
```

---


## πŸ“„ [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on  Agriculture](https://arxiv.org/abs/2401.08406)

**Authors:** Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha, Roberto  de M. Estev\~ao Filho, Todd Hendry, Daniel Holstein, Jennifer Marsman, Nick  Mecklenburg, Sara Malvar, Leonardo O. Nunes, Rafael Padilha, Morris Sharp,  Bruno Silva, Swati Sharma, Vijay Aski, Ranveer Chandra  
**Date:** ### 30 Jan 2024  
**Word Count (Title):** 11 | **Word Count (Summary):** 281  

**Links:** [Abstract](https://arxiv.org/abs/2401.08406)) | [PDF](https://arxiv.org/pdf/2401.08406).pdf)

**High Info Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which  
**ROUGE Score:** 5.34%

### 🎀 TTF Read Aloud
- **Title:** [RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on  Agriculture](https://arxiv.org/abs/2401.08406)
- **Key Terms:** fine-tuning, we, rag, llms, pipeline, p, rag and, are, knowledge, model, our, from, results, and fine-tuning, which
- **ROUGE:** 5.34%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["fine-tuning"] --> T2["we"]
    T2["we"] --> T3["rag"]
    T3["rag"] --> T4["llms"]
    T4["llms"] --> T5["pipeline"]
    T5["pipeline"] --> T6["p"]
    T6["p"] --> T7["rag and"]
    T7["rag and"] --> T8["are"]
    T8["are"] --> T9["knowledge"]
    T9["knowledge"] --> T10["model"]
    T10["model"] --> T11["our"]
    T11["our"] --> T12["from"]
    T12["from"] --> T13["results"]
    T13["results"] --> T14["and fine-tuning"]
    T14["and fine-tuning"] --> T15["which"]
```

---


## πŸ“„ [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)

**Authors:** Alan Ansell and Ivan Vuli\'c and Hannah Sterz and Anna Korhonen and  Edoardo M. Ponti  
**Date:** ### 02 Feb 2024  
**Word Count (Title):** 7 | **Word Count (Summary):** 219  

**Links:** [Abstract](https://arxiv.org/abs/2401.16405)) | [PDF](https://arxiv.org/pdf/2401.16405).pdf)

**High Info Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods  
**ROUGE Score:** 6.85%

### 🎀 TTF Read Aloud
- **Title:** [Scaling Sparse Fine-Tuning to Large Language Models](https://arxiv.org/abs/2401.16405)
- **Key Terms:** we, their, llms, fine-tuning, spiel, parameters, sparse, terms, indices, deltas, sparse fine-tuning, in terms, terms of, parameter-efficient, methods
- **ROUGE:** 6.85%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["we"] --> T2["their"]
    T2["their"] --> T3["llms"]
    T3["llms"] --> T4["fine-tuning"]
    T4["fine-tuning"] --> T5["spiel"]
    T5["spiel"] --> T6["parameters"]
    T6["parameters"] --> T7["sparse"]
    T7["sparse"] --> T8["terms"]
    T8["terms"] --> T9["indices"]
    T9["indices"] --> T10["deltas"]
    T10["deltas"] --> T11["sparse fine-tuning"]
    T11["sparse fine-tuning"] --> T12["in terms"]
    T12["in terms"] --> T13["terms of"]
    T13["terms of"] --> T14["parameter-efficient"]
    T14["parameter-efficient"] --> T15["methods"]
```

---


## πŸ“„ [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)

**Authors:** Andrei Zlotchevski, Dawn Drain, Alexey Svyatkovskiy, Colin Clement,  Neel Sundaresan, Michele Tufano  
**Date:** ### 20 Sep 2022  
**Word Count (Title):** 8 | **Word Count (Summary):** 226  

**Links:** [Abstract](https://arxiv.org/abs/2208.13928)) | [PDF](https://arxiv.org/pdf/2208.13928).pdf)

**High Info Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization  
**ROUGE Score:** 6.64%

### 🎀 TTF Read Aloud
- **Title:** [Exploring and Evaluating Personalized Models for Code Generation](https://arxiv.org/abs/2208.13928)
- **Key Terms:** model, fine-tuning, we, which, are, code, evaluate, parameters, large, transformer, modeling, learning, token, generalization, personalization
- **ROUGE:** 6.64%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["model"] --> T2["fine-tuning"]
    T2["fine-tuning"] --> T3["we"]
    T3["we"] --> T4["which"]
    T4["which"] --> T5["are"]
    T5["are"] --> T6["code"]
    T6["code"] --> T7["evaluate"]
    T7["evaluate"] --> T8["parameters"]
    T8["parameters"] --> T9["large"]
    T9["large"] --> T10["transformer"]
    T10["transformer"] --> T11["modeling"]
    T11["modeling"] --> T12["learning"]
    T12["learning"] --> T13["token"]
    T13["token"] --> T14["generalization"]
    T14["generalization"] --> T15["personalization"]
```

---


## πŸ“„ [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient  Parameter and Memory](https://arxiv.org/abs/2308.14316)

**Authors:** Haiwen Diao, Bo Wan, Ying Zhang, Xu Jia, Huchuan Lu, Long Chen  
**Date:** ### 28 Aug 2023  
**Word Count (Title):** 12 | **Word Count (Summary):** 225  

**Links:** [Abstract](https://arxiv.org/abs/2308.14316)) | [PDF](https://arxiv.org/pdf/2308.14316).pdf)

**High Info Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer  
**ROUGE Score:** 6.67%

### 🎀 TTF Read Aloud
- **Title:** [UniPT: Universal Parallel Tuning for Transfer Learning with Efficient  Parameter and Memory](https://arxiv.org/abs/2308.14316)
- **Key Terms:** petl, unipt, pre-trained, methods, we, parallel, that, petl methods, achieve, performance, tasks, parameters, networks, is, transfer
- **ROUGE:** 6.67%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["petl"] --> T2["unipt"]
    T2["unipt"] --> T3["pre-trained"]
    T3["pre-trained"] --> T4["methods"]
    T4["methods"] --> T5["we"]
    T5["we"] --> T6["parallel"]
    T6["parallel"] --> T7["that"]
    T7["that"] --> T8["petl methods"]
    T8["petl methods"] --> T9["achieve"]
    T9["achieve"] --> T10["performance"]
    T10["performance"] --> T11["tasks"]
    T11["tasks"] --> T12["parameters"]
    T12["parameters"] --> T13["networks"]
    T13["networks"] --> T14["is"]
    T14["is"] --> T15["transfer"]
```

---


## πŸ“„ [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)

**Authors:** Tiannan Wang, Jiamin Chen, Qingrui Jia, Shuai Wang, Ruoyu Fang, Huilin  Wang, Zhaowei Gao, Chunzhao Xie, Chuou Xu, Jihong Dai, Yibin Liu, Jialong Wu,  Shengwei Ding, Long Li, Zhiwei Huang, Xinle Deng, Teng Yu, Gangan Ma, Han  Xiao, Zixin Chen, Danjun Xiang, Yunxia Wang, Yuanyuan Zhu, Yi Xiao, Jing  Wang, Yiru Wang, Siran Ding, Jiayang Huang, Jiayi Xu, Yilihamu Tayier, Zhenyu  Hu, Yuan Gao, Chengfeng Zheng, Yueshu Ye, Yihang Li, Lei Wan, Xinyue Jiang,  Yujie Wang, Siyu Cheng, Zhule Song, Xiangru Tang, Xiaohua Xu, Ningyu Zhang,  Huajun Chen, Yuchen Eleanor Jiang, and Wangchunshu Zhou  
**Date:** ### 30 Jan 2024  
**Word Count (Title):** 6 | **Word Count (Summary):** 237  

**Links:** [Abstract](https://arxiv.org/abs/2401.17268)) | [PDF](https://arxiv.org/pdf/2401.17268).pdf)

**High Info Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional  
**ROUGE Score:** 6.33%

### 🎀 TTF Read Aloud
- **Title:** [Weaver: Foundation Models for Creative Writing](https://arxiv.org/abs/2401.17268)
- **Key Terms:** weaver, writing, llms, models, we, our, family, large, language, content, creation, carefully, improving, capabilities, professional
- **ROUGE:** 6.33%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["weaver"] --> T2["writing"]
    T2["writing"] --> T3["llms"]
    T3["llms"] --> T4["models"]
    T4["models"] --> T5["we"]
    T5["we"] --> T6["our"]
    T6["our"] --> T7["family"]
    T7["family"] --> T8["large"]
    T8["large"] --> T9["language"]
    T9["language"] --> T10["content"]
    T10["content"] --> T11["creation"]
    T11["creation"] --> T12["carefully"]
    T12["carefully"] --> T13["improving"]
    T13["improving"] --> T14["capabilities"]
    T14["capabilities"] --> T15["professional"]
```

---


## πŸ“„ [PERFECT: Prompt-free and Efficient Few-shot Learning with Language  Models](https://arxiv.org/abs/2204.01172)

**Authors:** Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James Henderson, Marzieh  Saeidi, Lambert Mathias, Veselin Stoyanov, and Majid Yazdani  
**Date:** ### 26 Apr 2022  
**Word Count (Title):** 9 | **Word Count (Summary):** 184  

**Links:** [Abstract](https://arxiv.org/abs/2204.01172)) | [PDF](https://arxiv.org/pdf/2204.01172).pdf)

**High Info Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple  
**ROUGE Score:** 8.15%

### 🎀 TTF Read Aloud
- **Title:** [PERFECT: Prompt-free and Efficient Few-shot Learning with Language  Models](https://arxiv.org/abs/2204.01172)
- **Key Terms:** few-shot, fine-tuning, that, perfect, we, which, methods, plms, engineered, prompts, verbalizers, new, task, can, simple
- **ROUGE:** 8.15%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["few-shot"] --> T2["fine-tuning"]
    T2["fine-tuning"] --> T3["that"]
    T3["that"] --> T4["perfect"]
    T4["perfect"] --> T5["we"]
    T5["we"] --> T6["which"]
    T6["which"] --> T7["methods"]
    T7["methods"] --> T8["plms"]
    T8["plms"] --> T9["engineered"]
    T9["engineered"] --> T10["prompts"]
    T10["prompts"] --> T11["verbalizers"]
    T11["verbalizers"] --> T12["new"]
    T12["new"] --> T13["task"]
    T13["task"] --> T14["can"]
    T14["can"] --> T15["simple"]
```

---


## πŸ“„ [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)

**Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing  Gao, Ahmed Hassan Awadallah, Jianfeng Gao  
**Date:** ### 02 Nov 2022  
**Word Count (Title):** 6 | **Word Count (Summary):** 191  

**Links:** [Abstract](https://arxiv.org/abs/2205.12410)) | [PDF](https://arxiv.org/pdf/2205.12410).pdf)

**High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large  
**ROUGE Score:** 7.85%

### 🎀 TTF Read Aloud
- **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2205.12410)
- **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
- **ROUGE:** 7.85%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["fine-tuning"] --> T2["peft"]
    T2["peft"] --> T3["plm"]
    T3["plm"] --> T4["adamix"]
    T4["adamix"] --> T5["tasks"]
    T5["tasks"] --> T6["parameters"]
    T6["parameters"] --> T7["we"]
    T7["we"] --> T8["method"]
    T8["method"] --> T9["that"]
    T9["that"] --> T10["mixture"]
    T10["mixture"] --> T11["the plm"]
    T11["the plm"] --> T12["peft method"]
    T12["peft method"] --> T13["a mixture"]
    T13["a mixture"] --> T14["mixture of"]
    T14["mixture of"] --> T15["large"]
```

---


## πŸ“„ [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)

**Authors:** Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing  Gao, Ahmed Hassan Awadallah, Jianfeng Gao  
**Date:** ### 02 Nov 2022  
**Word Count (Title):** 6 | **Word Count (Summary):** 191  

**Links:** [Abstract](https://arxiv.org/abs/2210.17451)) | [PDF](https://arxiv.org/pdf/2210.17451).pdf)

**High Info Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large  
**ROUGE Score:** 7.85%

### 🎀 TTF Read Aloud
- **Title:** [AdaMix: Mixture-of-Adaptations for Parameter-efficient Model Tuning](https://arxiv.org/abs/2210.17451)
- **Key Terms:** fine-tuning, peft, plm, adamix, tasks, parameters, we, method, that, mixture, the plm, peft method, a mixture, mixture of, large
- **ROUGE:** 7.85%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["fine-tuning"] --> T2["peft"]
    T2["peft"] --> T3["plm"]
    T3["plm"] --> T4["adamix"]
    T4["adamix"] --> T5["tasks"]
    T5["tasks"] --> T6["parameters"]
    T6["parameters"] --> T7["we"]
    T7["we"] --> T8["method"]
    T8["method"] --> T9["that"]
    T9["that"] --> T10["mixture"]
    T10["mixture"] --> T11["the plm"]
    T11["the plm"] --> T12["peft method"]
    T12["peft method"] --> T13["a mixture"]
    T13["a mixture"] --> T14["mixture of"]
    T14["mixture of"] --> T15["large"]
```

---


## πŸ“„ [ComPEFT: Compression for Communicating Parameter Efficient Updates via  Sparsification and Quantization](https://arxiv.org/abs/2311.13171)

**Authors:** Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal  
**Date:** ### 22 Nov 2023  
**Word Count (Title):** 11 | **Word Count (Summary):** 247  

**Links:** [Abstract](https://arxiv.org/abs/2311.13171)) | [PDF](https://arxiv.org/pdf/2311.13171).pdf)

**High Info Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show  
**ROUGE Score:** 6.07%

### 🎀 TTF Read Aloud
- **Title:** [ComPEFT: Compression for Communicating Parameter Efficient Updates via  Sparsification and Quantization](https://arxiv.org/abs/2311.13171)
- **Key Terms:** compeft, models, peft, we, expert, that, expert models, it, model, generalization, by, size, performance, show, we show
- **ROUGE:** 6.07%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["compeft"] --> T2["models"]
    T2["models"] --> T3["peft"]
    T3["peft"] --> T4["we"]
    T4["we"] --> T5["expert"]
    T5["expert"] --> T6["that"]
    T6["that"] --> T7["expert models"]
    T7["expert models"] --> T8["it"]
    T8["it"] --> T9["model"]
    T9["model"] --> T10["generalization"]
    T10["generalization"] --> T11["by"]
    T11["by"] --> T12["size"]
    T12["size"] --> T13["performance"]
    T13["performance"] --> T14["show"]
    T14["show"] --> T15["we show"]
```

---


## πŸ“„ [Bit Cipher -- A Simple yet Powerful Word Representation System that  Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)

**Authors:** Haoran Zhao and Jake Ryland Williams  
**Date:** ### 18 Nov 2023  
**Word Count (Title):** 16 | **Word Count (Summary):** 237  

**Links:** [Abstract](https://arxiv.org/abs/2311.11012)) | [PDF](https://arxiv.org/pdf/2311.11012).pdf)

**High Info Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process  
**ROUGE Score:** 6.33%

### 🎀 TTF Read Aloud
- **Title:** [Bit Cipher -- A Simple yet Powerful Word Representation System that  Integrates Efficiently with Language Models](https://arxiv.org/abs/2311.11012)
- **Key Terms:** bit-cipher, while, word, that, we, embeddings, efficiency, experiments, training, classic, from, convergence, glove, word2vec, process
- **ROUGE:** 6.33%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["bit-cipher"] --> T2["while"]
    T2["while"] --> T3["word"]
    T3["word"] --> T4["that"]
    T4["that"] --> T5["we"]
    T5["we"] --> T6["embeddings"]
    T6["embeddings"] --> T7["efficiency"]
    T7["efficiency"] --> T8["experiments"]
    T8["experiments"] --> T9["training"]
    T9["training"] --> T10["classic"]
    T10["classic"] --> T11["from"]
    T11["from"] --> T12["convergence"]
    T12["convergence"] --> T13["glove"]
    T13["glove"] --> T14["word2vec"]
    T14["word2vec"] --> T15["process"]
```

---


## πŸ“„ [ConES: Concept Embedding Search for Parameter Efficient Tuning Large  Vision Language Models](https://arxiv.org/abs/2305.18993)

**Authors:** Huahui Yi, Ziyuan Qin, Wei Xu, Miaotian Guo, Kun Wang, Shaoting Zhang,  Kang Li, Qicheng Lao  
**Date:** ### 30 May 2023  
**Word Count (Title):** 12 | **Word Count (Summary):** 275  

**Links:** [Abstract](https://arxiv.org/abs/2305.18993)) | [PDF](https://arxiv.org/pdf/2305.18993).pdf)

**High Info Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as  
**ROUGE Score:** 5.45%

### 🎀 TTF Read Aloud
- **Title:** [ConES: Concept Embedding Search for Parameter Efficient Tuning Large  Vision Language Models](https://arxiv.org/abs/2305.18993)
- **Key Terms:** prompt, tuning, text, encoder, text encoder, methods, embeddings, approach, our, the text, can, by, is, we, as
- **ROUGE:** 5.45%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["prompt"] --> T2["tuning"]
    T2["tuning"] --> T3["text"]
    T3["text"] --> T4["encoder"]
    T4["encoder"] --> T5["text encoder"]
    T5["text encoder"] --> T6["methods"]
    T6["methods"] --> T7["embeddings"]
    T7["embeddings"] --> T8["approach"]
    T8["approach"] --> T9["our"]
    T9["our"] --> T10["the text"]
    T10["the text"] --> T11["can"]
    T11["can"] --> T12["by"]
    T12["by"] --> T13["is"]
    T13["is"] --> T14["we"]
    T14["we"] --> T15["as"]
```

---


## πŸ“„ [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)

**Authors:** Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, Heng Ji  
**Date:** ### 17 May 2023  
**Word Count (Title):** 7 | **Word Count (Summary):** 279  

**Links:** [Abstract](https://arxiv.org/abs/2305.10314)) | [PDF](https://arxiv.org/pdf/2305.10314).pdf)

**High Info Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary  
**ROUGE Score:** 5.38%

### 🎀 TTF Read Aloud
- **Title:** [LeTI: Learning to Generate from Textual Interactions](https://arxiv.org/abs/2305.10314)
- **Key Terms:** feedback, leti, textual, code, language, lms, that, generation, natural, performance, textual feedback, outputs, from, we, binary
- **ROUGE:** 5.38%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["feedback"] --> T2["leti"]
    T2["leti"] --> T3["textual"]
    T3["textual"] --> T4["code"]
    T4["code"] --> T5["language"]
    T5["language"] --> T6["lms"]
    T6["lms"] --> T7["that"]
    T7["that"] --> T8["generation"]
    T8["generation"] --> T9["natural"]
    T9["natural"] --> T10["performance"]
    T10["performance"] --> T11["textual feedback"]
    T11["textual feedback"] --> T12["outputs"]
    T12["outputs"] --> T13["from"]
    T13["from"] --> T14["we"]
    T14["we"] --> T15["binary"]
```

---


## πŸ“„ [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision  Tasks](https://arxiv.org/abs/2210.03265)

**Authors:** Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, Zsolt Kira  
**Date:** ### 07 Oct 2022  
**Word Count (Title):** 8 | **Word Count (Summary):** 207  

**Links:** [Abstract](https://arxiv.org/abs/2210.03265)) | [PDF](https://arxiv.org/pdf/2210.03265).pdf)

**High Info Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with  
**ROUGE Score:** 7.25%

### 🎀 TTF Read Aloud
- **Title:** [Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision  Tasks](https://arxiv.org/abs/2210.03265)
- **Key Terms:** tasks, methods, vision, fine-tuning, parameter-efficient, different, parameters, existing, vision tasks, while, transformers, this, trainable, different tasks, tasks with
- **ROUGE:** 7.25%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["tasks"] --> T2["methods"]
    T2["methods"] --> T3["vision"]
    T3["vision"] --> T4["fine-tuning"]
    T4["fine-tuning"] --> T5["parameter-efficient"]
    T5["parameter-efficient"] --> T6["different"]
    T6["different"] --> T7["parameters"]
    T7["parameters"] --> T8["existing"]
    T8["existing"] --> T9["vision tasks"]
    T9["vision tasks"] --> T10["while"]
    T10["while"] --> T11["transformers"]
    T11["transformers"] --> T12["this"]
    T12["this"] --> T13["trainable"]
    T13["trainable"] --> T14["different tasks"]
    T14["different tasks"] --> T15["tasks with"]
```

---


## πŸ“„ [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language  Models](https://arxiv.org/abs/2111.00160)

**Authors:** Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah,  Zhangyang Wang, Yu Cheng  
**Date:** ### 24 May 2023  
**Word Count (Title):** 9 | **Word Count (Summary):** 239  

**Links:** [Abstract](https://arxiv.org/abs/2111.00160)) | [PDF](https://arxiv.org/pdf/2111.00160).pdf)

**High Info Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain  
**ROUGE Score:** 6.28%

### 🎀 TTF Read Aloud
- **Title:** [DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language  Models](https://arxiv.org/abs/2111.00160)
- **Key Terms:** by, pre-trained, models, fine-tuning, as, two, fine-tuned, model, dsee, language, starting, point, towards, downstream, pain
- **ROUGE:** 6.28%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["by"] --> T2["pre-trained"]
    T2["pre-trained"] --> T3["models"]
    T3["models"] --> T4["fine-tuning"]
    T4["fine-tuning"] --> T5["as"]
    T5["as"] --> T6["two"]
    T6["two"] --> T7["fine-tuned"]
    T7["fine-tuned"] --> T8["model"]
    T8["model"] --> T9["dsee"]
    T9["dsee"] --> T10["language"]
    T10["language"] --> T11["starting"]
    T11["starting"] --> T12["point"]
    T12["point"] --> T13["towards"]
    T13["towards"] --> T14["downstream"]
    T14["downstream"] --> T15["pain"]
```

---


## πŸ“„ [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)

**Authors:** M Saiful Bari, Aston Zhang, Shuai Zheng, Xingjian Shi, Yi Zhu, Shafiq  Joty, Mu Li  
**Date:** ### 21 Dec 2022  
**Word Count (Title):** 8 | **Word Count (Summary):** 147  

**Links:** [Abstract](https://arxiv.org/abs/2212.10929)) | [PDF](https://arxiv.org/pdf/2212.10929).pdf)

**High Info Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods  
**ROUGE Score:** 10.2%

### 🎀 TTF Read Aloud
- **Title:** [SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning](https://arxiv.org/abs/2212.10929)
- **Key Terms:** spt, fine-tuning, prompts, generalization, prompt, tuning, datasets, prompt tuning, language, can, multitask, prompted, learning, tasks, methods
- **ROUGE:** 10.2%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["spt"] --> T2["fine-tuning"]
    T2["fine-tuning"] --> T3["prompts"]
    T3["prompts"] --> T4["generalization"]
    T4["generalization"] --> T5["prompt"]
    T5["prompt"] --> T6["tuning"]
    T6["tuning"] --> T7["datasets"]
    T7["datasets"] --> T8["prompt tuning"]
    T8["prompt tuning"] --> T9["language"]
    T9["language"] --> T10["can"]
    T10["can"] --> T11["multitask"]
    T11["multitask"] --> T12["prompted"]
    T12["prompted"] --> T13["learning"]
    T13["learning"] --> T14["tasks"]
    T14["tasks"] --> T15["methods"]
```

---


## πŸ“„ [HyperTuning: Toward Adapting Large Language Models without  Back-propagation](https://arxiv.org/abs/2211.12485)

**Authors:** Jason Phang, Yi Mao, Pengcheng He, Weizhu Chen  
**Date:** ### 22 Nov 2022  
**Word Count (Title):** 8 | **Word Count (Summary):** 164  

**Links:** [Abstract](https://arxiv.org/abs/2211.12485)) | [PDF](https://arxiv.org/pdf/2211.12485).pdf)

**High Info Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models  
**ROUGE Score:** 9.15%

### 🎀 TTF Read Aloud
- **Title:** [HyperTuning: Toward Adapting Large Language Models without  Back-propagation](https://arxiv.org/abs/2211.12485)
- **Key Terms:** that, parameters, we, language, fine-tuning, large, tasks, can, hypertuning, model, hypermodel, generate, hypert5, parameters for, models
- **ROUGE:** 9.15%

#### Mermaid Graph of Key Concepts
```mermaid
flowchart TD
    T1["that"] --> T2["parameters"]
    T2["parameters"] --> T3["we"]
    T3["we"] --> T4["language"]
    T4["language"] --> T5["fine-tuning"]
    T5["fine-tuning"] --> T6["large"]
    T6["large"] --> T7["tasks"]
    T7["tasks"] --> T8["can"]
    T8["can"] --> T9["hypertuning"]
    T9["hypertuning"] --> T10["model"]
    T10["model"] --> T11["hypermodel"]
    T11["hypermodel"] --> T12["generate"]
    T12["generate"] --> T13["hypert5"]
    T13["hypert5"] --> T14["parameters for"]
    T14["parameters for"] --> T15["models"]
```

---