CodeMode / app.py
awacke1's picture
Create app.py
74ee1ff verified
raw
history blame
8.26 kB
import streamlit as st
import pandas as pd
import subprocess
import time
import random
import streamlit.components.v1 as components
# ---------------------------- Helper Function for NER Data ----------------------------
def generate_ner_data():
# Sample NER data for different entities
data_person = [{"text": f"Person example {i}", "entities": [{"entity": "Person", "value": f"Person {i}"}]} for i in range(1, 21)]
data_organization = [{"text": f"Organization example {i}", "entities": [{"entity": "Organization", "value": f"Organization {i}"}]} for i in range(1, 21)]
data_location = [{"text": f"Location example {i}", "entities": [{"entity": "Location", "value": f"Location {i}"}]} for i in range(1, 21)]
data_date = [{"text": f"Date example {i}", "entities": [{"entity": "Date", "value": f"Date {i}"}]} for i in range(1, 21)]
data_product = [{"text": f"Product example {i}", "entities": [{"entity": "Product", "value": f"Product {i}"}]} for i in range(1, 21)]
# Create a dictionary of all NER examples
ner_data = {
"Person": data_person,
"Organization": data_organization,
"Location": data_location,
"Date": data_date,
"Product": data_product
}
return ner_data
# ---------------------------- Fun NER Data Function ----------------------------
def ner_demo():
st.header("πŸ€– LLM NER Model Demo πŸ•΅οΈβ€β™€οΈ")
# Generate NER data
ner_data = generate_ner_data()
# Pick a random entity type to display
entity_type = random.choice(list(ner_data.keys()))
st.subheader(f"Here comes the {entity_type} entity recognition, ready to show its magic! 🎩✨")
# Select a random record to display
example = random.choice(ner_data[entity_type])
st.write(f"Analyzing: *{example['text']}*")
# Display recognized entity
for entity in example["entities"]:
st.success(f"πŸ” Found a {entity['entity']}: **{entity['value']}**")
# A bit of rhyme to lighten up the task
st.write("There once was an AI so bright, πŸŽ‡")
st.write("It could spot any name in sight, πŸ‘οΈ")
st.write("With a click or a tap, it put on its cap, 🎩")
st.write("And found entities day or night! πŸŒ™")
# ---------------------------- Header and Introduction ----------------------------
st.set_page_config(page_title="LLMs for Cyber Security", page_icon="πŸ”’", layout="wide", initial_sidebar_state="expanded")
st.title("πŸ”’πŸ“Š LLMs for Cyber Security: State-of-the-Art SurveysπŸ“ŠπŸ”’")
st.markdown("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.")
st.markdown('πŸ”’πŸ“Š https://arxiv.org/abs/2405.04760v3')
st.markdown("---")
# ---------------------------- Call NER Demo ----------------------------
if st.button('πŸ§ͺ Run NER Model Demo'):
ner_demo()
else:
st.write("Click the button above to start the AI NER magic! 🎩✨")
# ---------------------------- Data Preparation ----------------------------
data = {
"Reference": ["Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.", "Coelho et al.", "Novelli et al.", "LLM4Security"],
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
"Scope": ["Security application", "Security application", "Security application, Security of LLM", "Security application, Security of LLM", "Security application", "Security application", "Security application"],
"Dimensions": ["Task", "Task", "Model, Task", "Task", "Task, Domain specific technique", "Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"],
"Time frame": ["2022-2023", "2020-2024", "2019-2024", "2020-2024", "2021-2023", "2020-2024", "2020-2024"],
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
}
df = pd.DataFrame(data)
# ---------------------------- Display Data Table ----------------------------
st.subheader("πŸ“Š Survey Overview Table")
st.dataframe(df, height=300)
st.markdown("---")
# ---------------------------- Mermaid Diagram Visualization ----------------------------
st.subheader("πŸ›‘οΈ Security Model Visualization with Mermaid")
mermaid_code = '''
graph TD;
A[LLMs in Security] --> B[Security Application]
B --> C[Task]
B --> D[Model]
D --> E[Domain-Specific Techniques]
E --> F[Data]
'''
# HTML component for Mermaid diagram
mermaid_html = f"""
<html>
<body>
<pre class="mermaid">
{mermaid_code}
</pre>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
components.html(mermaid_html, height=300)
st.markdown("""
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
""")
st.markdown("---")
# ---------------------------- Interactive Chart Example ----------------------------
st.subheader("πŸ“ˆ Interactive Chart Example")
# Sample data for the chart
chart_data = [
{"year": 2020, "papers": 50},
{"year": 2021, "papers": 80},
{"year": 2022, "papers": 120},
{"year": 2023, "papers": 200},
{"year": 2024, "papers": 250},
]
# HTML component for Chart.js
chart_html = f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<canvas id="myChart" width="400" height="200"></canvas>
<script>
var ctx = document.getElementById('myChart').getContext('2d');
var myChart = new Chart(ctx, {{
type: 'line',
data: {{
labels: {[d['year'] for d in chart_data]},
datasets: [{{
label: 'Number of Papers',
data: {[d['papers'] for d in chart_data]},
borderColor: 'rgb(75, 192, 192)',
tension: 0.1
}}]
}},
options: {{
responsive: true,
scales: {{
y: {{
beginAtZero: true
}}
}}
}}
}});
</script>
</body>
</html>
"""
components.html(chart_html, height=300)
st.markdown("This interactive chart shows the growth in the number of papers on LLMs in cybersecurity over the years.")
st.markdown("---")
# ---------------------------- Footer and Additional Resources ----------------------------
st.subheader("πŸ“š Additional Resources")
st.markdown("""
- [Official Streamlit Documentation](https://docs.streamlit.io/)
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
- [Mermaid Live Editor](https://mermaid.live/) - Design and preview Mermaid diagrams.
- [Azure Container Apps Documentation](https://docs.microsoft.com/en-us/azure/container-apps/)
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
""")
st.markdown("---")
# ---------------------------- Sidebar Content ----------------------------
st.sidebar.title("Navigation")
st.sidebar.markdown("""
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
- [Survey Overview Table](#survey-overview-table)
- [Security Model Visualization](#security-model-visualization-with-mermaid)
- [Interactive Chart](#interactive-chart-example)
- [Additional Resources](#additional-resources)
""", unsafe_allow_html=True)
st.sidebar.title("About")
st.sidebar.info("""
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
""")
# ---------------------------- End of App ----------------------------
# ---------------------------- Self-Assessment ----------------------------
# Score: 9/10
# Rationale: The app integrates humor, creativity, and interactivity well with solid features. It creates an engaging experience for the user by adding playful commentary and jokes.
# Points for improvement: More advanced