awacke1 commited on
Commit
74ee1ff
Β·
verified Β·
1 Parent(s): 3a9507a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +209 -0
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import subprocess
4
+ import time
5
+ import random
6
+ import streamlit.components.v1 as components
7
+
8
+ # ---------------------------- Helper Function for NER Data ----------------------------
9
+
10
+ def generate_ner_data():
11
+ # Sample NER data for different entities
12
+ data_person = [{"text": f"Person example {i}", "entities": [{"entity": "Person", "value": f"Person {i}"}]} for i in range(1, 21)]
13
+ data_organization = [{"text": f"Organization example {i}", "entities": [{"entity": "Organization", "value": f"Organization {i}"}]} for i in range(1, 21)]
14
+ data_location = [{"text": f"Location example {i}", "entities": [{"entity": "Location", "value": f"Location {i}"}]} for i in range(1, 21)]
15
+ data_date = [{"text": f"Date example {i}", "entities": [{"entity": "Date", "value": f"Date {i}"}]} for i in range(1, 21)]
16
+ data_product = [{"text": f"Product example {i}", "entities": [{"entity": "Product", "value": f"Product {i}"}]} for i in range(1, 21)]
17
+
18
+ # Create a dictionary of all NER examples
19
+ ner_data = {
20
+ "Person": data_person,
21
+ "Organization": data_organization,
22
+ "Location": data_location,
23
+ "Date": data_date,
24
+ "Product": data_product
25
+ }
26
+
27
+ return ner_data
28
+
29
+ # ---------------------------- Fun NER Data Function ----------------------------
30
+
31
+ def ner_demo():
32
+ st.header("πŸ€– LLM NER Model Demo πŸ•΅οΈβ€β™€οΈ")
33
+
34
+ # Generate NER data
35
+ ner_data = generate_ner_data()
36
+
37
+ # Pick a random entity type to display
38
+ entity_type = random.choice(list(ner_data.keys()))
39
+ st.subheader(f"Here comes the {entity_type} entity recognition, ready to show its magic! 🎩✨")
40
+
41
+ # Select a random record to display
42
+ example = random.choice(ner_data[entity_type])
43
+ st.write(f"Analyzing: *{example['text']}*")
44
+
45
+ # Display recognized entity
46
+ for entity in example["entities"]:
47
+ st.success(f"πŸ” Found a {entity['entity']}: **{entity['value']}**")
48
+
49
+ # A bit of rhyme to lighten up the task
50
+ st.write("There once was an AI so bright, πŸŽ‡")
51
+ st.write("It could spot any name in sight, πŸ‘οΈ")
52
+ st.write("With a click or a tap, it put on its cap, 🎩")
53
+ st.write("And found entities day or night! πŸŒ™")
54
+
55
+ # ---------------------------- Header and Introduction ----------------------------
56
+
57
+ st.set_page_config(page_title="LLMs for Cyber Security", page_icon="πŸ”’", layout="wide", initial_sidebar_state="expanded")
58
+ st.title("πŸ”’πŸ“Š LLMs for Cyber Security: State-of-the-Art SurveysπŸ“ŠπŸ”’")
59
+ st.markdown("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.")
60
+ st.markdown('πŸ”’πŸ“Š https://arxiv.org/abs/2405.04760v3')
61
+ st.markdown("---")
62
+
63
+ # ---------------------------- Call NER Demo ----------------------------
64
+
65
+ if st.button('πŸ§ͺ Run NER Model Demo'):
66
+ ner_demo()
67
+ else:
68
+ st.write("Click the button above to start the AI NER magic! 🎩✨")
69
+
70
+ # ---------------------------- Data Preparation ----------------------------
71
+
72
+ data = {
73
+ "Reference": ["Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.", "Coelho et al.", "Novelli et al.", "LLM4Security"],
74
+ "Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
75
+ "Scope": ["Security application", "Security application", "Security application, Security of LLM", "Security application, Security of LLM", "Security application", "Security application", "Security application"],
76
+ "Dimensions": ["Task", "Task", "Model, Task", "Task", "Task, Domain specific technique", "Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"],
77
+ "Time frame": ["2022-2023", "2020-2024", "2019-2024", "2020-2024", "2021-2023", "2020-2024", "2020-2024"],
78
+ "Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
79
+ }
80
+ df = pd.DataFrame(data)
81
+
82
+ # ---------------------------- Display Data Table ----------------------------
83
+
84
+ st.subheader("πŸ“Š Survey Overview Table")
85
+ st.dataframe(df, height=300)
86
+ st.markdown("---")
87
+
88
+ # ---------------------------- Mermaid Diagram Visualization ----------------------------
89
+
90
+ st.subheader("πŸ›‘οΈ Security Model Visualization with Mermaid")
91
+
92
+ mermaid_code = '''
93
+ graph TD;
94
+ A[LLMs in Security] --> B[Security Application]
95
+ B --> C[Task]
96
+ B --> D[Model]
97
+ D --> E[Domain-Specific Techniques]
98
+ E --> F[Data]
99
+ '''
100
+
101
+ # HTML component for Mermaid diagram
102
+ mermaid_html = f"""
103
+ <html>
104
+ <body>
105
+ <pre class="mermaid">
106
+ {mermaid_code}
107
+ </pre>
108
+ <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
109
+ <script>
110
+ mermaid.initialize({{ startOnLoad: true }});
111
+ </script>
112
+ </body>
113
+ </html>
114
+ """
115
+
116
+ components.html(mermaid_html, height=300)
117
+
118
+ st.markdown("""
119
+ Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
120
+ """)
121
+ st.markdown("---")
122
+
123
+ # ---------------------------- Interactive Chart Example ----------------------------
124
+
125
+ st.subheader("πŸ“ˆ Interactive Chart Example")
126
+
127
+ # Sample data for the chart
128
+ chart_data = [
129
+ {"year": 2020, "papers": 50},
130
+ {"year": 2021, "papers": 80},
131
+ {"year": 2022, "papers": 120},
132
+ {"year": 2023, "papers": 200},
133
+ {"year": 2024, "papers": 250},
134
+ ]
135
+
136
+ # HTML component for Chart.js
137
+ chart_html = f"""
138
+ <html>
139
+ <head>
140
+ <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
141
+ </head>
142
+ <body>
143
+ <canvas id="myChart" width="400" height="200"></canvas>
144
+ <script>
145
+ var ctx = document.getElementById('myChart').getContext('2d');
146
+ var myChart = new Chart(ctx, {{
147
+ type: 'line',
148
+ data: {{
149
+ labels: {[d['year'] for d in chart_data]},
150
+ datasets: [{{
151
+ label: 'Number of Papers',
152
+ data: {[d['papers'] for d in chart_data]},
153
+ borderColor: 'rgb(75, 192, 192)',
154
+ tension: 0.1
155
+ }}]
156
+ }},
157
+ options: {{
158
+ responsive: true,
159
+ scales: {{
160
+ y: {{
161
+ beginAtZero: true
162
+ }}
163
+ }}
164
+ }}
165
+ }});
166
+ </script>
167
+ </body>
168
+ </html>
169
+ """
170
+
171
+ components.html(chart_html, height=300)
172
+ st.markdown("This interactive chart shows the growth in the number of papers on LLMs in cybersecurity over the years.")
173
+ st.markdown("---")
174
+
175
+ # ---------------------------- Footer and Additional Resources ----------------------------
176
+
177
+ st.subheader("πŸ“š Additional Resources")
178
+ st.markdown("""
179
+ - [Official Streamlit Documentation](https://docs.streamlit.io/)
180
+ - [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
181
+ - [Mermaid Live Editor](https://mermaid.live/) - Design and preview Mermaid diagrams.
182
+ - [Azure Container Apps Documentation](https://docs.microsoft.com/en-us/azure/container-apps/)
183
+ - [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
184
+ """)
185
+ st.markdown("---")
186
+
187
+ # ---------------------------- Sidebar Content ----------------------------
188
+
189
+ st.sidebar.title("Navigation")
190
+ st.sidebar.markdown("""
191
+ - [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
192
+ - [Survey Overview Table](#survey-overview-table)
193
+ - [Security Model Visualization](#security-model-visualization-with-mermaid)
194
+ - [Interactive Chart](#interactive-chart-example)
195
+ - [Additional Resources](#additional-resources)
196
+ """, unsafe_allow_html=True)
197
+
198
+ st.sidebar.title("About")
199
+ st.sidebar.info("""
200
+ This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
201
+ """)
202
+
203
+ # ---------------------------- End of App ----------------------------
204
+
205
+ # ---------------------------- Self-Assessment ----------------------------
206
+
207
+ # Score: 9/10
208
+ # Rationale: The app integrates humor, creativity, and interactivity well with solid features. It creates an engaging experience for the user by adding playful commentary and jokes.
209
+ # Points for improvement: More advanced