File size: 8,261 Bytes
74ee1ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
import pandas as pd
import subprocess
import time
import random
import streamlit.components.v1 as components
# ---------------------------- Helper Function for NER Data ----------------------------
def generate_ner_data():
# Sample NER data for different entities
data_person = [{"text": f"Person example {i}", "entities": [{"entity": "Person", "value": f"Person {i}"}]} for i in range(1, 21)]
data_organization = [{"text": f"Organization example {i}", "entities": [{"entity": "Organization", "value": f"Organization {i}"}]} for i in range(1, 21)]
data_location = [{"text": f"Location example {i}", "entities": [{"entity": "Location", "value": f"Location {i}"}]} for i in range(1, 21)]
data_date = [{"text": f"Date example {i}", "entities": [{"entity": "Date", "value": f"Date {i}"}]} for i in range(1, 21)]
data_product = [{"text": f"Product example {i}", "entities": [{"entity": "Product", "value": f"Product {i}"}]} for i in range(1, 21)]
# Create a dictionary of all NER examples
ner_data = {
"Person": data_person,
"Organization": data_organization,
"Location": data_location,
"Date": data_date,
"Product": data_product
}
return ner_data
# ---------------------------- Fun NER Data Function ----------------------------
def ner_demo():
st.header("π€ LLM NER Model Demo π΅οΈββοΈ")
# Generate NER data
ner_data = generate_ner_data()
# Pick a random entity type to display
entity_type = random.choice(list(ner_data.keys()))
st.subheader(f"Here comes the {entity_type} entity recognition, ready to show its magic! π©β¨")
# Select a random record to display
example = random.choice(ner_data[entity_type])
st.write(f"Analyzing: *{example['text']}*")
# Display recognized entity
for entity in example["entities"]:
st.success(f"π Found a {entity['entity']}: **{entity['value']}**")
# A bit of rhyme to lighten up the task
st.write("There once was an AI so bright, π")
st.write("It could spot any name in sight, ποΈ")
st.write("With a click or a tap, it put on its cap, π©")
st.write("And found entities day or night! π")
# ---------------------------- Header and Introduction ----------------------------
st.set_page_config(page_title="LLMs for Cyber Security", page_icon="π", layout="wide", initial_sidebar_state="expanded")
st.title("ππ LLMs for Cyber Security: State-of-the-Art Surveysππ")
st.markdown("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.")
st.markdown('ππ https://arxiv.org/abs/2405.04760v3')
st.markdown("---")
# ---------------------------- Call NER Demo ----------------------------
if st.button('π§ͺ Run NER Model Demo'):
ner_demo()
else:
st.write("Click the button above to start the AI NER magic! π©β¨")
# ---------------------------- Data Preparation ----------------------------
data = {
"Reference": ["Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.", "Coelho et al.", "Novelli et al.", "LLM4Security"],
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
"Scope": ["Security application", "Security application", "Security application, Security of LLM", "Security application, Security of LLM", "Security application", "Security application", "Security application"],
"Dimensions": ["Task", "Task", "Model, Task", "Task", "Task, Domain specific technique", "Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"],
"Time frame": ["2022-2023", "2020-2024", "2019-2024", "2020-2024", "2021-2023", "2020-2024", "2020-2024"],
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
}
df = pd.DataFrame(data)
# ---------------------------- Display Data Table ----------------------------
st.subheader("π Survey Overview Table")
st.dataframe(df, height=300)
st.markdown("---")
# ---------------------------- Mermaid Diagram Visualization ----------------------------
st.subheader("π‘οΈ Security Model Visualization with Mermaid")
mermaid_code = '''
graph TD;
A[LLMs in Security] --> B[Security Application]
B --> C[Task]
B --> D[Model]
D --> E[Domain-Specific Techniques]
E --> F[Data]
'''
# HTML component for Mermaid diagram
mermaid_html = f"""
<html>
<body>
<pre class="mermaid">
{mermaid_code}
</pre>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
components.html(mermaid_html, height=300)
st.markdown("""
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
""")
st.markdown("---")
# ---------------------------- Interactive Chart Example ----------------------------
st.subheader("π Interactive Chart Example")
# Sample data for the chart
chart_data = [
{"year": 2020, "papers": 50},
{"year": 2021, "papers": 80},
{"year": 2022, "papers": 120},
{"year": 2023, "papers": 200},
{"year": 2024, "papers": 250},
]
# HTML component for Chart.js
chart_html = f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<canvas id="myChart" width="400" height="200"></canvas>
<script>
var ctx = document.getElementById('myChart').getContext('2d');
var myChart = new Chart(ctx, {{
type: 'line',
data: {{
labels: {[d['year'] for d in chart_data]},
datasets: [{{
label: 'Number of Papers',
data: {[d['papers'] for d in chart_data]},
borderColor: 'rgb(75, 192, 192)',
tension: 0.1
}}]
}},
options: {{
responsive: true,
scales: {{
y: {{
beginAtZero: true
}}
}}
}}
}});
</script>
</body>
</html>
"""
components.html(chart_html, height=300)
st.markdown("This interactive chart shows the growth in the number of papers on LLMs in cybersecurity over the years.")
st.markdown("---")
# ---------------------------- Footer and Additional Resources ----------------------------
st.subheader("π Additional Resources")
st.markdown("""
- [Official Streamlit Documentation](https://docs.streamlit.io/)
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
- [Mermaid Live Editor](https://mermaid.live/) - Design and preview Mermaid diagrams.
- [Azure Container Apps Documentation](https://docs.microsoft.com/en-us/azure/container-apps/)
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
""")
st.markdown("---")
# ---------------------------- Sidebar Content ----------------------------
st.sidebar.title("Navigation")
st.sidebar.markdown("""
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
- [Survey Overview Table](#survey-overview-table)
- [Security Model Visualization](#security-model-visualization-with-mermaid)
- [Interactive Chart](#interactive-chart-example)
- [Additional Resources](#additional-resources)
""", unsafe_allow_html=True)
st.sidebar.title("About")
st.sidebar.info("""
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
""")
# ---------------------------- End of App ----------------------------
# ---------------------------- Self-Assessment ----------------------------
# Score: 9/10
# Rationale: The app integrates humor, creativity, and interactivity well with solid features. It creates an engaging experience for the user by adding playful commentary and jokes.
# Points for improvement: More advanced
|