AiCoderv2's picture
Update app.py
ac3aaa9 verified
raw
history blame
7.92 kB
import gradio as gr
import zipfile
import os
import uuid
import shutil
import subprocess
import sys
import time
from PIL import Image
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
# Directory setup
UPLOAD_DIR = "uploads"
MODEL_DIR = "models"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(MODEL_DIR, exist_ok=True)
def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size, image_size):
try:
uid = str(uuid.uuid4())
zip_path = os.path.join(UPLOAD_DIR, f"{uid}.zip")
shutil.copyfile(dataset_file.name, zip_path)
extract_path = os.path.join(UPLOAD_DIR, uid)
os.makedirs(extract_path, exist_ok=True)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
train_dir = os.path.join(extract_path, "train")
val_dir = os.path.join(extract_path, "validation")
# πŸ›  Auto-generate folders and dummy images if missing
if not os.path.exists(train_dir) or not os.path.exists(val_dir):
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
for split_dir in [train_dir, val_dir]:
for class_name in ["class_a", "class_b"]:
class_path = os.path.join(split_dir, class_name)
os.makedirs(class_path, exist_ok=True)
# Generate 2 dummy images per class
for i in range(2):
img = Image.new('RGB', (image_size, image_size), color=(i * 50, 100, 150))
img.save(os.path.join(class_path, f"sample_{i}.jpg"))
# Data generators
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
zoom_range=0.2
)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
actual_classes = train_generator.num_classes
if actual_classes != num_classes:
num_classes = actual_classes
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(image_size, image_size, 3)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(64, 3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, 3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
start_time = time.time()
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=epochs,
validation_data=val_generator,
validation_steps=val_generator.samples // val_generator.batch_size,
verbose=0
)
training_time = time.time() - start_time
model_dir = os.path.join(MODEL_DIR, uid)
os.makedirs(model_dir, exist_ok=True)
h5_path = os.path.join(model_dir, f"{model_name}.h5")
model.save(h5_path)
savedmodel_path = os.path.join(model_dir, "savedmodel")
model.save(savedmodel_path)
tfjs_path = os.path.join(model_dir, "tfjs")
try:
subprocess.run([
"tensorflowjs_converter",
"--input_format=tf_saved_model",
savedmodel_path,
tfjs_path
], check=True)
except Exception:
subprocess.run([sys.executable, "-m", "pip", "install", "tensorflowjs"], check=True)
subprocess.run([
"tensorflowjs_converter",
"--input_format=tf_saved_model",
savedmodel_path,
tfjs_path
], check=True)
model_size = 0
for dirpath, _, filenames in os.walk(model_dir):
for f in filenames:
model_size += os.path.getsize(os.path.join(dirpath, f))
model_size_mb = model_size / (1024 * 1024)
result_text = f"""
βœ… Training completed successfully!
⏱️ Training time: {training_time:.2f} seconds
πŸ“Š Best validation accuracy: {max(history.history['val_accuracy']):.4f}
πŸ“¦ Model size: {model_size_mb:.2f} MB
πŸ—‚οΈ Number of classes: {num_classes}
"""
return result_text, h5_path, savedmodel_path, tfjs_path
except Exception as e:
return f"❌ Training failed: {str(e)}", None, None, None
# Gradio Interface
with gr.Blocks(title="AI Image Classifier Trainer") as demo:
gr.Markdown("# πŸ–ΌοΈ AI Image Classifier Trainer")
gr.Markdown("Upload a ZIP of `train/` and `validation/`, or leave it empty to auto-generate dummy data.")
with gr.Row():
with gr.Column():
dataset = gr.File(label="Dataset ZIP File", file_types=[".zip"])
model_name = gr.Textbox(label="Model Name", value="my_classifier")
num_classes = gr.Slider(2, 100, value=5, step=1, label="Number of Classes")
epochs = gr.Slider(5, 200, value=30, step=1, label="Training Epochs")
batch_size = gr.Radio([16, 32, 64], value=32, label="Batch Size")
image_size = gr.Radio([128, 224, 256], value=224, label="Image Size (px)")
train_btn = gr.Button("πŸš€ Train Model", variant="primary")
with gr.Column():
output = gr.Textbox(label="Training Results", interactive=False)
with gr.Column(visible=False) as download_col:
h5_download = gr.File(label="H5 Model Download")
savedmodel_download = gr.File(label="SavedModel Download")
tfjs_download = gr.File(label="TensorFlow.js Download")
def toggle_downloads(result, h5_path, saved_path, tfjs_path):
if h5_path:
return (
gr.Column(visible=True),
gr.File(value=h5_path),
gr.File(value=saved_path),
gr.File(value=tfjs_path)
)
return (
gr.Column(visible=False),
gr.File(value=None),
gr.File(value=None),
gr.File(value=None)
)
train_btn.click(
fn=train_and_export,
inputs=[dataset, model_name, num_classes, epochs, batch_size, image_size],
outputs=[output, h5_download, savedmodel_download, tfjs_download]
).then(
fn=toggle_downloads,
inputs=[output, h5_download, savedmodel_download, tfjs_download],
outputs=[download_col, h5_download, savedmodel_download, tfjs_download]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, max_file_size="100mb")