File size: 7,924 Bytes
a08e47f b842669 ac3aaa9 a08e47f b842669 a08e47f b842669 414eaf1 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 b842669 ac3aaa9 414eaf1 b842669 ac3aaa9 b842669 ac3aaa9 414eaf1 ac3aaa9 b842669 a08e47f ac3aaa9 b842669 ac3aaa9 b842669 414eaf1 ac3aaa9 414eaf1 b842669 414eaf1 b842669 ac3aaa9 b842669 414eaf1 b842669 a08e47f ac3aaa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import zipfile
import os
import uuid
import shutil
import subprocess
import sys
import time
from PIL import Image
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
# Directory setup
UPLOAD_DIR = "uploads"
MODEL_DIR = "models"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(MODEL_DIR, exist_ok=True)
def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size, image_size):
try:
uid = str(uuid.uuid4())
zip_path = os.path.join(UPLOAD_DIR, f"{uid}.zip")
shutil.copyfile(dataset_file.name, zip_path)
extract_path = os.path.join(UPLOAD_DIR, uid)
os.makedirs(extract_path, exist_ok=True)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)
train_dir = os.path.join(extract_path, "train")
val_dir = os.path.join(extract_path, "validation")
# ๐ Auto-generate folders and dummy images if missing
if not os.path.exists(train_dir) or not os.path.exists(val_dir):
os.makedirs(train_dir, exist_ok=True)
os.makedirs(val_dir, exist_ok=True)
for split_dir in [train_dir, val_dir]:
for class_name in ["class_a", "class_b"]:
class_path = os.path.join(split_dir, class_name)
os.makedirs(class_path, exist_ok=True)
# Generate 2 dummy images per class
for i in range(2):
img = Image.new('RGB', (image_size, image_size), color=(i * 50, 100, 150))
img.save(os.path.join(class_path, f"sample_{i}.jpg"))
# Data generators
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
zoom_range=0.2
)
val_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(image_size, image_size),
batch_size=batch_size,
class_mode='categorical'
)
actual_classes = train_generator.num_classes
if actual_classes != num_classes:
num_classes = actual_classes
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(image_size, image_size, 3)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(64, 3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(128, 3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
start_time = time.time()
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // train_generator.batch_size,
epochs=epochs,
validation_data=val_generator,
validation_steps=val_generator.samples // val_generator.batch_size,
verbose=0
)
training_time = time.time() - start_time
model_dir = os.path.join(MODEL_DIR, uid)
os.makedirs(model_dir, exist_ok=True)
h5_path = os.path.join(model_dir, f"{model_name}.h5")
model.save(h5_path)
savedmodel_path = os.path.join(model_dir, "savedmodel")
model.save(savedmodel_path)
tfjs_path = os.path.join(model_dir, "tfjs")
try:
subprocess.run([
"tensorflowjs_converter",
"--input_format=tf_saved_model",
savedmodel_path,
tfjs_path
], check=True)
except Exception:
subprocess.run([sys.executable, "-m", "pip", "install", "tensorflowjs"], check=True)
subprocess.run([
"tensorflowjs_converter",
"--input_format=tf_saved_model",
savedmodel_path,
tfjs_path
], check=True)
model_size = 0
for dirpath, _, filenames in os.walk(model_dir):
for f in filenames:
model_size += os.path.getsize(os.path.join(dirpath, f))
model_size_mb = model_size / (1024 * 1024)
result_text = f"""
โ
Training completed successfully!
โฑ๏ธ Training time: {training_time:.2f} seconds
๐ Best validation accuracy: {max(history.history['val_accuracy']):.4f}
๐ฆ Model size: {model_size_mb:.2f} MB
๐๏ธ Number of classes: {num_classes}
"""
return result_text, h5_path, savedmodel_path, tfjs_path
except Exception as e:
return f"โ Training failed: {str(e)}", None, None, None
# Gradio Interface
with gr.Blocks(title="AI Image Classifier Trainer") as demo:
gr.Markdown("# ๐ผ๏ธ AI Image Classifier Trainer")
gr.Markdown("Upload a ZIP of `train/` and `validation/`, or leave it empty to auto-generate dummy data.")
with gr.Row():
with gr.Column():
dataset = gr.File(label="Dataset ZIP File", file_types=[".zip"])
model_name = gr.Textbox(label="Model Name", value="my_classifier")
num_classes = gr.Slider(2, 100, value=5, step=1, label="Number of Classes")
epochs = gr.Slider(5, 200, value=30, step=1, label="Training Epochs")
batch_size = gr.Radio([16, 32, 64], value=32, label="Batch Size")
image_size = gr.Radio([128, 224, 256], value=224, label="Image Size (px)")
train_btn = gr.Button("๐ Train Model", variant="primary")
with gr.Column():
output = gr.Textbox(label="Training Results", interactive=False)
with gr.Column(visible=False) as download_col:
h5_download = gr.File(label="H5 Model Download")
savedmodel_download = gr.File(label="SavedModel Download")
tfjs_download = gr.File(label="TensorFlow.js Download")
def toggle_downloads(result, h5_path, saved_path, tfjs_path):
if h5_path:
return (
gr.Column(visible=True),
gr.File(value=h5_path),
gr.File(value=saved_path),
gr.File(value=tfjs_path)
)
return (
gr.Column(visible=False),
gr.File(value=None),
gr.File(value=None),
gr.File(value=None)
)
train_btn.click(
fn=train_and_export,
inputs=[dataset, model_name, num_classes, epochs, batch_size, image_size],
outputs=[output, h5_download, savedmodel_download, tfjs_download]
).then(
fn=toggle_downloads,
inputs=[output, h5_download, savedmodel_download, tfjs_download],
outputs=[download_col, h5_download, savedmodel_download, tfjs_download]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, max_file_size="100mb")
|