Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import shutil
|
|
6 |
import subprocess
|
7 |
import sys
|
8 |
import time
|
|
|
9 |
import tensorflow as tf
|
10 |
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
11 |
import numpy as np
|
@@ -18,28 +19,34 @@ os.makedirs(MODEL_DIR, exist_ok=True)
|
|
18 |
|
19 |
def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size, image_size):
|
20 |
try:
|
21 |
-
# Generate unique ID for this training session
|
22 |
uid = str(uuid.uuid4())
|
23 |
zip_path = os.path.join(UPLOAD_DIR, f"{uid}.zip")
|
24 |
-
|
25 |
-
# Copy uploaded file to our storage
|
26 |
shutil.copyfile(dataset_file.name, zip_path)
|
27 |
-
|
28 |
-
# Extract dataset
|
29 |
extract_path = os.path.join(UPLOAD_DIR, uid)
|
30 |
os.makedirs(extract_path, exist_ok=True)
|
31 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
32 |
zip_ref.extractall(extract_path)
|
33 |
-
|
34 |
-
# Locate train and validation directories
|
35 |
train_dir = os.path.join(extract_path, "train")
|
36 |
val_dir = os.path.join(extract_path, "validation")
|
37 |
-
|
38 |
-
#
|
39 |
if not os.path.exists(train_dir) or not os.path.exists(val_dir):
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
train_datagen = ImageDataGenerator(
|
44 |
rescale=1./255,
|
45 |
rotation_range=20,
|
@@ -48,59 +55,52 @@ def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size,
|
|
48 |
horizontal_flip=True,
|
49 |
zoom_range=0.2
|
50 |
)
|
51 |
-
|
52 |
val_datagen = ImageDataGenerator(rescale=1./255)
|
53 |
-
|
54 |
train_generator = train_datagen.flow_from_directory(
|
55 |
train_dir,
|
56 |
target_size=(image_size, image_size),
|
57 |
batch_size=batch_size,
|
58 |
class_mode='categorical'
|
59 |
)
|
60 |
-
|
61 |
val_generator = val_datagen.flow_from_directory(
|
62 |
val_dir,
|
63 |
target_size=(image_size, image_size),
|
64 |
batch_size=batch_size,
|
65 |
class_mode='categorical'
|
66 |
)
|
67 |
-
|
68 |
-
# Update num_classes based on actual data
|
69 |
actual_classes = train_generator.num_classes
|
70 |
if actual_classes != num_classes:
|
71 |
num_classes = actual_classes
|
72 |
-
|
73 |
-
# Build model
|
74 |
model = tf.keras.Sequential([
|
75 |
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(image_size, image_size, 3)),
|
76 |
tf.keras.layers.BatchNormalization(),
|
77 |
tf.keras.layers.MaxPooling2D(),
|
78 |
tf.keras.layers.Dropout(0.25),
|
79 |
-
|
80 |
tf.keras.layers.Conv2D(64, 3, activation='relu'),
|
81 |
tf.keras.layers.BatchNormalization(),
|
82 |
tf.keras.layers.MaxPooling2D(),
|
83 |
tf.keras.layers.Dropout(0.25),
|
84 |
-
|
85 |
tf.keras.layers.Conv2D(128, 3, activation='relu'),
|
86 |
tf.keras.layers.BatchNormalization(),
|
87 |
tf.keras.layers.MaxPooling2D(),
|
88 |
tf.keras.layers.Dropout(0.25),
|
89 |
-
|
90 |
tf.keras.layers.Flatten(),
|
91 |
tf.keras.layers.Dense(256, activation='relu'),
|
92 |
tf.keras.layers.BatchNormalization(),
|
93 |
tf.keras.layers.Dropout(0.5),
|
94 |
tf.keras.layers.Dense(num_classes, activation='softmax')
|
95 |
])
|
96 |
-
|
97 |
model.compile(
|
98 |
optimizer='adam',
|
99 |
loss='categorical_crossentropy',
|
100 |
metrics=['accuracy']
|
101 |
)
|
102 |
-
|
103 |
-
# Train model
|
104 |
start_time = time.time()
|
105 |
history = model.fit(
|
106 |
train_generator,
|
@@ -111,20 +111,16 @@ def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size,
|
|
111 |
verbose=0
|
112 |
)
|
113 |
training_time = time.time() - start_time
|
114 |
-
|
115 |
-
# Save models
|
116 |
model_dir = os.path.join(MODEL_DIR, uid)
|
117 |
os.makedirs(model_dir, exist_ok=True)
|
118 |
-
|
119 |
-
# Save H5 model
|
120 |
h5_path = os.path.join(model_dir, f"{model_name}.h5")
|
121 |
model.save(h5_path)
|
122 |
-
|
123 |
-
# Save SavedModel
|
124 |
savedmodel_path = os.path.join(model_dir, "savedmodel")
|
125 |
model.save(savedmodel_path)
|
126 |
-
|
127 |
-
# Convert to TensorFlow.js
|
128 |
tfjs_path = os.path.join(model_dir, "tfjs")
|
129 |
try:
|
130 |
subprocess.run([
|
@@ -134,7 +130,6 @@ def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size,
|
|
134 |
tfjs_path
|
135 |
], check=True)
|
136 |
except Exception:
|
137 |
-
# Install tensorflowjs if not available
|
138 |
subprocess.run([sys.executable, "-m", "pip", "install", "tensorflowjs"], check=True)
|
139 |
subprocess.run([
|
140 |
"tensorflowjs_converter",
|
@@ -142,40 +137,31 @@ def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size,
|
|
142 |
savedmodel_path,
|
143 |
tfjs_path
|
144 |
], check=True)
|
145 |
-
|
146 |
-
# Calculate model size
|
147 |
model_size = 0
|
148 |
for dirpath, _, filenames in os.walk(model_dir):
|
149 |
for f in filenames:
|
150 |
-
|
151 |
-
model_size += os.path.getsize(fp)
|
152 |
model_size_mb = model_size / (1024 * 1024)
|
153 |
-
|
154 |
-
# Prepare results
|
155 |
result_text = f"""
|
156 |
✅ Training completed successfully!
|
157 |
-
⏱️ Training time: {training_time:.2f} seconds
|
158 |
-
📊 Best validation accuracy: {max(history.history['val_accuracy']):.4f}
|
159 |
-
📦 Model size: {model_size_mb:.2f} MB
|
160 |
-
🗂️ Number of classes: {num_classes}
|
161 |
-
|
162 |
-
Download links available below ⬇️
|
163 |
"""
|
164 |
-
|
165 |
-
# Return paths for download
|
166 |
return result_text, h5_path, savedmodel_path, tfjs_path
|
167 |
-
|
168 |
except Exception as e:
|
169 |
return f"❌ Training failed: {str(e)}", None, None, None
|
170 |
|
171 |
-
# Gradio
|
172 |
with gr.Blocks(title="AI Image Classifier Trainer") as demo:
|
173 |
gr.Markdown("# 🖼️ AI Image Classifier Trainer")
|
174 |
-
gr.Markdown(""
|
175 |
-
|
176 |
-
configure training parameters, and download models in multiple formats.
|
177 |
-
""")
|
178 |
-
|
179 |
with gr.Row():
|
180 |
with gr.Column():
|
181 |
dataset = gr.File(label="Dataset ZIP File", file_types=[".zip"])
|
@@ -192,7 +178,7 @@ with gr.Blocks(title="AI Image Classifier Trainer") as demo:
|
|
192 |
h5_download = gr.File(label="H5 Model Download")
|
193 |
savedmodel_download = gr.File(label="SavedModel Download")
|
194 |
tfjs_download = gr.File(label="TensorFlow.js Download")
|
195 |
-
|
196 |
def toggle_downloads(result, h5_path, saved_path, tfjs_path):
|
197 |
if h5_path:
|
198 |
return (
|
@@ -207,7 +193,7 @@ with gr.Blocks(title="AI Image Classifier Trainer") as demo:
|
|
207 |
gr.File(value=None),
|
208 |
gr.File(value=None)
|
209 |
)
|
210 |
-
|
211 |
train_btn.click(
|
212 |
fn=train_and_export,
|
213 |
inputs=[dataset, model_name, num_classes, epochs, batch_size, image_size],
|
@@ -218,11 +204,5 @@ with gr.Blocks(title="AI Image Classifier Trainer") as demo:
|
|
218 |
outputs=[download_col, h5_download, savedmodel_download, tfjs_download]
|
219 |
)
|
220 |
|
221 |
-
# Launch settings for Hugging Face Spaces
|
222 |
if __name__ == "__main__":
|
223 |
-
demo.launch(
|
224 |
-
server_name="0.0.0.0",
|
225 |
-
server_port=7860,
|
226 |
-
share=False,
|
227 |
-
max_file_size="100mb" # Allows 100MB file uploads
|
228 |
-
)
|
|
|
6 |
import subprocess
|
7 |
import sys
|
8 |
import time
|
9 |
+
from PIL import Image
|
10 |
import tensorflow as tf
|
11 |
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
12 |
import numpy as np
|
|
|
19 |
|
20 |
def train_and_export(dataset_file, model_name, num_classes, epochs, batch_size, image_size):
|
21 |
try:
|
|
|
22 |
uid = str(uuid.uuid4())
|
23 |
zip_path = os.path.join(UPLOAD_DIR, f"{uid}.zip")
|
|
|
|
|
24 |
shutil.copyfile(dataset_file.name, zip_path)
|
25 |
+
|
|
|
26 |
extract_path = os.path.join(UPLOAD_DIR, uid)
|
27 |
os.makedirs(extract_path, exist_ok=True)
|
28 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
29 |
zip_ref.extractall(extract_path)
|
30 |
+
|
|
|
31 |
train_dir = os.path.join(extract_path, "train")
|
32 |
val_dir = os.path.join(extract_path, "validation")
|
33 |
+
|
34 |
+
# 🛠 Auto-generate folders and dummy images if missing
|
35 |
if not os.path.exists(train_dir) or not os.path.exists(val_dir):
|
36 |
+
os.makedirs(train_dir, exist_ok=True)
|
37 |
+
os.makedirs(val_dir, exist_ok=True)
|
38 |
+
|
39 |
+
for split_dir in [train_dir, val_dir]:
|
40 |
+
for class_name in ["class_a", "class_b"]:
|
41 |
+
class_path = os.path.join(split_dir, class_name)
|
42 |
+
os.makedirs(class_path, exist_ok=True)
|
43 |
+
|
44 |
+
# Generate 2 dummy images per class
|
45 |
+
for i in range(2):
|
46 |
+
img = Image.new('RGB', (image_size, image_size), color=(i * 50, 100, 150))
|
47 |
+
img.save(os.path.join(class_path, f"sample_{i}.jpg"))
|
48 |
+
|
49 |
+
# Data generators
|
50 |
train_datagen = ImageDataGenerator(
|
51 |
rescale=1./255,
|
52 |
rotation_range=20,
|
|
|
55 |
horizontal_flip=True,
|
56 |
zoom_range=0.2
|
57 |
)
|
|
|
58 |
val_datagen = ImageDataGenerator(rescale=1./255)
|
59 |
+
|
60 |
train_generator = train_datagen.flow_from_directory(
|
61 |
train_dir,
|
62 |
target_size=(image_size, image_size),
|
63 |
batch_size=batch_size,
|
64 |
class_mode='categorical'
|
65 |
)
|
66 |
+
|
67 |
val_generator = val_datagen.flow_from_directory(
|
68 |
val_dir,
|
69 |
target_size=(image_size, image_size),
|
70 |
batch_size=batch_size,
|
71 |
class_mode='categorical'
|
72 |
)
|
73 |
+
|
|
|
74 |
actual_classes = train_generator.num_classes
|
75 |
if actual_classes != num_classes:
|
76 |
num_classes = actual_classes
|
77 |
+
|
|
|
78 |
model = tf.keras.Sequential([
|
79 |
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(image_size, image_size, 3)),
|
80 |
tf.keras.layers.BatchNormalization(),
|
81 |
tf.keras.layers.MaxPooling2D(),
|
82 |
tf.keras.layers.Dropout(0.25),
|
|
|
83 |
tf.keras.layers.Conv2D(64, 3, activation='relu'),
|
84 |
tf.keras.layers.BatchNormalization(),
|
85 |
tf.keras.layers.MaxPooling2D(),
|
86 |
tf.keras.layers.Dropout(0.25),
|
|
|
87 |
tf.keras.layers.Conv2D(128, 3, activation='relu'),
|
88 |
tf.keras.layers.BatchNormalization(),
|
89 |
tf.keras.layers.MaxPooling2D(),
|
90 |
tf.keras.layers.Dropout(0.25),
|
|
|
91 |
tf.keras.layers.Flatten(),
|
92 |
tf.keras.layers.Dense(256, activation='relu'),
|
93 |
tf.keras.layers.BatchNormalization(),
|
94 |
tf.keras.layers.Dropout(0.5),
|
95 |
tf.keras.layers.Dense(num_classes, activation='softmax')
|
96 |
])
|
97 |
+
|
98 |
model.compile(
|
99 |
optimizer='adam',
|
100 |
loss='categorical_crossentropy',
|
101 |
metrics=['accuracy']
|
102 |
)
|
103 |
+
|
|
|
104 |
start_time = time.time()
|
105 |
history = model.fit(
|
106 |
train_generator,
|
|
|
111 |
verbose=0
|
112 |
)
|
113 |
training_time = time.time() - start_time
|
114 |
+
|
|
|
115 |
model_dir = os.path.join(MODEL_DIR, uid)
|
116 |
os.makedirs(model_dir, exist_ok=True)
|
117 |
+
|
|
|
118 |
h5_path = os.path.join(model_dir, f"{model_name}.h5")
|
119 |
model.save(h5_path)
|
120 |
+
|
|
|
121 |
savedmodel_path = os.path.join(model_dir, "savedmodel")
|
122 |
model.save(savedmodel_path)
|
123 |
+
|
|
|
124 |
tfjs_path = os.path.join(model_dir, "tfjs")
|
125 |
try:
|
126 |
subprocess.run([
|
|
|
130 |
tfjs_path
|
131 |
], check=True)
|
132 |
except Exception:
|
|
|
133 |
subprocess.run([sys.executable, "-m", "pip", "install", "tensorflowjs"], check=True)
|
134 |
subprocess.run([
|
135 |
"tensorflowjs_converter",
|
|
|
137 |
savedmodel_path,
|
138 |
tfjs_path
|
139 |
], check=True)
|
140 |
+
|
|
|
141 |
model_size = 0
|
142 |
for dirpath, _, filenames in os.walk(model_dir):
|
143 |
for f in filenames:
|
144 |
+
model_size += os.path.getsize(os.path.join(dirpath, f))
|
|
|
145 |
model_size_mb = model_size / (1024 * 1024)
|
146 |
+
|
|
|
147 |
result_text = f"""
|
148 |
✅ Training completed successfully!
|
149 |
+
⏱️ Training time: {training_time:.2f} seconds
|
150 |
+
📊 Best validation accuracy: {max(history.history['val_accuracy']):.4f}
|
151 |
+
📦 Model size: {model_size_mb:.2f} MB
|
152 |
+
🗂️ Number of classes: {num_classes}
|
|
|
|
|
153 |
"""
|
154 |
+
|
|
|
155 |
return result_text, h5_path, savedmodel_path, tfjs_path
|
156 |
+
|
157 |
except Exception as e:
|
158 |
return f"❌ Training failed: {str(e)}", None, None, None
|
159 |
|
160 |
+
# Gradio Interface
|
161 |
with gr.Blocks(title="AI Image Classifier Trainer") as demo:
|
162 |
gr.Markdown("# 🖼️ AI Image Classifier Trainer")
|
163 |
+
gr.Markdown("Upload a ZIP of `train/` and `validation/`, or leave it empty to auto-generate dummy data.")
|
164 |
+
|
|
|
|
|
|
|
165 |
with gr.Row():
|
166 |
with gr.Column():
|
167 |
dataset = gr.File(label="Dataset ZIP File", file_types=[".zip"])
|
|
|
178 |
h5_download = gr.File(label="H5 Model Download")
|
179 |
savedmodel_download = gr.File(label="SavedModel Download")
|
180 |
tfjs_download = gr.File(label="TensorFlow.js Download")
|
181 |
+
|
182 |
def toggle_downloads(result, h5_path, saved_path, tfjs_path):
|
183 |
if h5_path:
|
184 |
return (
|
|
|
193 |
gr.File(value=None),
|
194 |
gr.File(value=None)
|
195 |
)
|
196 |
+
|
197 |
train_btn.click(
|
198 |
fn=train_and_export,
|
199 |
inputs=[dataset, model_name, num_classes, epochs, batch_size, image_size],
|
|
|
204 |
outputs=[download_col, h5_download, savedmodel_download, tfjs_download]
|
205 |
)
|
206 |
|
|
|
207 |
if __name__ == "__main__":
|
208 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, max_file_size="100mb")
|
|
|
|
|
|
|
|
|
|