alidenewade's picture
Update README.md
d337468 verified
metadata
title: Drug Discovery Pipeline
emoji: 🐠
colorFrom: purple
colorTo: green
sdk: docker
pinned: false
license: mit
short_description: AI-Powered Drug Discovery Pipeline Demo

πŸ”¬ AI-Powered Drug Discovery Pipeline

Hugging Face Spaces License: MIT Python Docker

An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.

πŸš€ Try Live Demo β€’ πŸ“– Documentation β€’ πŸ› οΈ Installation β€’ 🀝 Contribute


🎯 Overview

This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process.

πŸ”„ Pipeline Phases

🎯 Phase 1
Discovery & Target ID
Protein analysis & compound screening

πŸ§ͺ Phase 2
Lead Generation
Virtual screening & ADMET prediction

πŸ”¬ Phase 3
Preclinical Development
Molecular analysis & toxicity testing

πŸ“‹ Phase 4
Implementation
Regulatory docs & pharmacovigilance


✨ Key Features

🎯 Phase 1: Discovery & Target Identification

  • 🧬 Protein Structure Fetching - Retrieve 3D structures from PDB database
  • πŸ” FASTA Sequence Analysis - Fetch and analyze protein sequences from NCBI
  • πŸ“Š Interactive 3D Visualization - Explore protein structures with py3Dmol
  • βš—οΈ Molecular Property Calculation - Compute physicochemical properties using RDKit
  • πŸ“ˆ Drug-Likeness Assessment - Evaluate compounds using Lipinski's Rule of Five
  • πŸ“Š Properties Dashboard - Visualize molecular properties with interactive plots

πŸ§ͺ Phase 2: Lead Generation & Optimization

  • 🎯 Virtual Screening Simulation - Rank compounds by predicted binding affinity
  • πŸ’Š ADMET Prediction - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
  • πŸ”¬ 2D/3D Molecular Visualization - Interactive molecule viewers with dark theme
  • πŸ”— Protein-Ligand Interaction - Visualize binding sites and molecular interactions
  • πŸ“‹ Lead Compound Analysis - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen

πŸ”¬ Phase 3: Preclinical Development

  • πŸ“Š Comprehensive Property Analysis - Extended molecular descriptor calculations
  • πŸ€– AI-Powered Toxicity Prediction - Machine learning model for toxicity risk assessment
  • 🧬 Advanced Compound Profiling - Analysis of clinical candidates including Remdesivir and Penicillin G
  • 🎨 3D Molecular Gallery - Interactive visualization of compound libraries

πŸ“‹ Phase 4: Implementation & Post-Market

  • πŸ“„ Regulatory Documentation - AI/ML model documentation templates for FDA submission
  • ⚠️ Pharmacovigilance Simulation - Real-world data analysis for adverse event detection
  • πŸ›‘οΈ Ethical Framework - Guidelines for responsible AI in healthcare
  • πŸ“ˆ Adverse Event Analysis - Statistical analysis and visualization of safety data

πŸ› οΈ Technical Stack

Core Technologies

Category Technologies
πŸ–₯️ Framework Streamlit
πŸ§ͺ Cheminformatics RDKit
🧬 Bioinformatics BioPython
🎨 Visualization py3Dmol Matplotlib
πŸ€– Machine Learning Scikit-learn

Data Sources

Source Description
πŸ›οΈ PDB Protein Data Bank - 3D protein structures
🧬 NCBI Protein sequences and biological data
πŸ’Š ChEMBL Bioactivity database (referenced)

πŸš€ Installation & Usage

🌐 Quick Start - Hugging Face Spaces

The easiest way to explore the pipeline:

πŸ”— https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline

No installation required! Simply click the link above to start exploring.

πŸ’» Local Development

Prerequisites

  • Python 3.8 or higher
  • Git

Setup

# πŸ“₯ Clone the repository
git clone <repository-url>
cd drug-discovery-pipeline

# πŸ”§ Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# πŸ“¦ Install dependencies
pip install -r requirements.txt

# πŸš€ Launch the application
streamlit run app.py

Access the Application

🌐 Local URL: http://localhost:8501

🐳 Docker Deployment

Option 1: Quick Run

# πŸƒβ€β™‚οΈ Run directly from Docker Hub (if available)
docker run -p 8501:8501 alidenewade/drug-discovery-pipeline

Option 2: Build from Source

# πŸ”¨ Build the Docker image
docker build -t drug-discovery-pipeline .

# πŸš€ Run the container
docker run -p 8501:8501 drug-discovery-pipeline

Docker Compose (Advanced)

# docker-compose.yml
version: '3.8'
services:
  drug-discovery:
    build: .
    ports:
      - "8501:8501"
    environment:
      - STREAMLIT_SERVER_PORT=8501
    volumes:
      - ./data:/app/data  # Optional: for persistent data
# 🐳 Deploy with Docker Compose
docker-compose up -d

πŸ“‹ Dependencies

πŸ“¦ Click to view complete requirements.txt
# πŸ–₯️ Web Framework
streamlit>=1.28.0

# πŸ“Š Data Processing
pandas>=1.5.0
numpy>=1.24.0

# πŸ“ˆ Visualization
matplotlib>=3.6.0
seaborn>=0.12.0
plotly>=5.15.0

# 🌐 Network & APIs
requests>=2.28.0

# πŸ–ΌοΈ Image Processing
pillow>=9.5.0

# πŸ§ͺ Cheminformatics
rdkit>=2023.3.1

# 🧬 Bioinformatics
biopython>=1.81

# πŸ€– Machine Learning
scikit-learn>=1.3.0

# 🎨 3D Molecular Visualization
py3dmol>=2.0.0

# πŸ”§ Utilities
streamlit-option-menu>=0.3.6
streamlit-aggrid>=0.3.4

🎯 Use Cases & Applications

πŸŽ“ Educational πŸ”¬ Research 🏭 Industry
Drug discovery training Proof of concept demos Pipeline optimization
Cheminformatics education Method validation AI strategy planning
Bioinformatics learning Collaborative research Regulatory compliance
AI in healthcare Publication support Risk assessment

πŸ“š Educational Applications

  • πŸŽ“ University Courses - Pharmaceutical sciences, computational biology
  • πŸ‘©β€πŸ« Training Programs - Professional development in drug discovery
  • πŸ“– Self-Learning - Interactive exploration of drug development concepts
  • 🎯 Workshops - Hands-on demonstrations for conferences and seminars

πŸ”¬ Research Applications

  • πŸ’‘ Hypothesis Generation - Explore structure-activity relationships
  • πŸ§ͺ Method Development - Test computational approaches
  • πŸ“Š Data Visualization - Create publication-ready figures
  • 🀝 Collaboration - Share analyses with research teams

πŸ”¬ Scientific Methodology

🧬 Molecular Analysis Framework

Method Description Implementation
πŸ“ Lipinski's Rule of Five Drug-likeness assessment RDKit molecular descriptors
πŸ’Š ADMET Profiling Pharmacokinetic predictions Machine learning models
⚠️ Toxicity Modeling Safety risk assessment Ensemble ML algorithms
πŸ”— SAR Analysis Structure-activity relationships Statistical correlation analysis

πŸ“Š Data Integration Pipeline

graph LR
    A[🧬 Structural Data] --> D[πŸ”„ Integration Engine]
    B[πŸ“Š Chemical Data] --> D
    C[πŸ“ˆ Biological Data] --> D
    D --> E[πŸ€– AI Analysis]
    E --> F[πŸ“‹ Results Dashboard]

⚠️ Important Disclaimers

🚨 FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY

⚠️ Limitation πŸ“ Details
πŸŽ“ Educational Tool Demonstration purposes only, not for actual drug development
🎲 Simulated Data Some analyses use simulated data for illustration
πŸ“‹ Regulatory Compliance Consult regulatory agencies for actual submissions
πŸ‘¨β€βš•οΈ Professional Use Real development requires validated, regulated systems
πŸ”¬ Research Grade Requires validation for production use

🀝 Contributing

We welcome contributions from the community! Here's how you can help:

πŸ› οΈ Development Guidelines

# 🍴 Fork the repository
git fork https://github.com/username/drug-discovery-pipeline

# 🌿 Create a feature branch
git checkout -b feature/amazing-feature

# πŸ’» Make your changes
# ... code changes ...

# βœ… Test your changes
python -m pytest tests/

# πŸ“ Commit your changes
git commit -m "Add amazing feature"

# πŸš€ Push to your branch
git push origin feature/amazing-feature

# πŸ”„ Create a Pull Request

πŸ“‹ Contribution Areas

  • πŸ› Bug Fixes - Fix issues and improve stability
  • ✨ New Features - Add new analysis methods or visualizations
  • πŸ“š Documentation - Improve README, add tutorials
  • πŸ§ͺ Testing - Expand test coverage
  • 🎨 UI/UX - Enhance user interface and experience
  • ⚑ Performance - Optimize for speed and memory usage

πŸ“ Code Standards

  • 🐍 Python Style - Follow PEP 8 guidelines
  • πŸ“ Documentation - Add docstrings and comments
  • πŸ§ͺ Testing - Include unit tests for new features
  • πŸ”§ Type Hints - Use type annotations where applicable

πŸ“ž Support & Community

πŸ’¬ Get Help

Hugging Face Discussions

πŸ†˜ Issue Type πŸ”— Where to Go
πŸ› Bug Reports GitHub Issues (if available)
πŸ’‘ Feature Requests Hugging Face Discussions
❓ Usage Questions Community Tab on HF Space
πŸ“š Documentation README and inline help

πŸ“„ License & Citation

πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ“– Citation

If you use this tool in your research or education, please cite:

@software{drug_discovery_pipeline_2024,
  title={AI-Powered Drug Discovery Pipeline},
  author={alidenewade},
  year={2024},
  url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline},
  note={Interactive demonstration of AI in pharmaceutical development}
}

πŸ™ Acknowledgments

Built with ❀️ by the open-source community

πŸ›οΈ Organization 🎯 Contribution
πŸ§ͺ RDKit Community Excellent cheminformatics tools and algorithms
πŸ›οΈ PDB & NCBI Open access to biological and structural data
πŸ–₯️ Streamlit Team Intuitive web application framework
🧬 BioPython Comprehensive biological computation tools
πŸ€– Scikit-learn Machine learning algorithms and utilities
🎨 py3Dmol Beautiful 3D molecular visualization
πŸ”¬ Scientific Community Advancing computational drug discovery

πŸ”— Quick Links

πŸš€ Action πŸ”— Link
🌐 Live Demo Try Now
πŸ‘€ Author Profile alidenewade
πŸ”¬ ORCID 0009-0007-0069-4646
πŸ“š ResearchGate Ali Denewade
πŸ’¬ Discussions Community
πŸ“Š Analytics Space Stats

⭐ Star this project if you find it useful! ⭐