Spaces:
Sleeping
Sleeping
| title: Drug Discovery Pipeline | |
| emoji: π | |
| colorFrom: purple | |
| colorTo: green | |
| sdk: docker | |
| pinned: false | |
| license: mit | |
| short_description: AI-Powered Drug Discovery Pipeline Demo | |
| # π¬ AI-Powered Drug Discovery Pipeline | |
| <div align="center"> | |
| [](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) | |
| [](https://opensource.org/licenses/MIT) | |
| [](https://www.python.org/) | |
| [](https://www.docker.com/) | |
| **An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.** | |
| [π **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) β’ [π **Documentation**](#-overview) β’ [π οΈ **Installation**](#-installation--usage) β’ [π€ **Contribute**](#-contributing) | |
| </div> | |
| --- | |
| ## π― Overview | |
| This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process. | |
| ### π Pipeline Phases | |
| <table> | |
| <tr> | |
| <td width="25%" align="center"> | |
| **π― Phase 1** | |
| <br> | |
| **Discovery & Target ID** | |
| <br> | |
| <sub>Protein analysis & compound screening</sub> | |
| </td> | |
| <td width="25%" align="center"> | |
| **π§ͺ Phase 2** | |
| <br> | |
| **Lead Generation** | |
| <br> | |
| <sub>Virtual screening & ADMET prediction</sub> | |
| </td> | |
| <td width="25%" align="center"> | |
| **π¬ Phase 3** | |
| <br> | |
| **Preclinical Development** | |
| <br> | |
| <sub>Molecular analysis & toxicity testing</sub> | |
| </td> | |
| <td width="25%" align="center"> | |
| **π Phase 4** | |
| <br> | |
| **Implementation** | |
| <br> | |
| <sub>Regulatory docs & pharmacovigilance</sub> | |
| </td> | |
| </tr> | |
| </table> | |
| --- | |
| ## β¨ Key Features | |
| ### π― **Phase 1: Discovery & Target Identification** | |
| - **𧬠Protein Structure Fetching** - Retrieve 3D structures from PDB database | |
| - **π FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI | |
| - **π Interactive 3D Visualization** - Explore protein structures with py3Dmol | |
| - **βοΈ Molecular Property Calculation** - Compute physicochemical properties using RDKit | |
| - **π Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five | |
| - **π Properties Dashboard** - Visualize molecular properties with interactive plots | |
| ### π§ͺ **Phase 2: Lead Generation & Optimization** | |
| - **π― Virtual Screening Simulation** - Rank compounds by predicted binding affinity | |
| - **π ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity | |
| - **π¬ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme | |
| - **π Protein-Ligand Interaction** - Visualize binding sites and molecular interactions | |
| - **π Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen | |
| ### π¬ **Phase 3: Preclinical Development** | |
| - **π Comprehensive Property Analysis** - Extended molecular descriptor calculations | |
| - **π€ AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment | |
| - **𧬠Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G | |
| - **π¨ 3D Molecular Gallery** - Interactive visualization of compound libraries | |
| ### π **Phase 4: Implementation & Post-Market** | |
| - **π Regulatory Documentation** - AI/ML model documentation templates for FDA submission | |
| - **β οΈ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection | |
| - **π‘οΈ Ethical Framework** - Guidelines for responsible AI in healthcare | |
| - **π Adverse Event Analysis** - Statistical analysis and visualization of safety data | |
| --- | |
| ## π οΈ Technical Stack | |
| <div align="center"> | |
| ### **Core Technologies** | |
| | Category | Technologies | | |
| |----------|-------------| | |
| | **π₯οΈ Framework** |  | | |
| | **π§ͺ Cheminformatics** |  | | |
| | **𧬠Bioinformatics** |  | | |
| | **π¨ Visualization** |   | | |
| | **π€ Machine Learning** |  | | |
| ### **Data Sources** | |
| | Source | Description | | |
| |--------|-------------| | |
| | **ποΈ PDB** | Protein Data Bank - 3D protein structures | | |
| | **𧬠NCBI** | Protein sequences and biological data | | |
| | **π ChEMBL** | Bioactivity database (referenced) | | |
| </div> | |
| --- | |
| ## π Installation & Usage | |
| ### π **Quick Start - Hugging Face Spaces** | |
| The easiest way to explore the pipeline: | |
| ```bash | |
| π https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline | |
| ``` | |
| > **No installation required!** Simply click the link above to start exploring. | |
| ### π» **Local Development** | |
| #### **Prerequisites** | |
| - Python 3.8 or higher | |
| - Git | |
| #### **Setup** | |
| ```bash | |
| # π₯ Clone the repository | |
| git clone <repository-url> | |
| cd drug-discovery-pipeline | |
| # π§ Create virtual environment (recommended) | |
| python -m venv venv | |
| source venv/bin/activate # On Windows: venv\Scripts\activate | |
| # π¦ Install dependencies | |
| pip install -r requirements.txt | |
| # π Launch the application | |
| streamlit run app.py | |
| ``` | |
| #### **Access the Application** | |
| ``` | |
| π Local URL: http://localhost:8501 | |
| ``` | |
| ### π³ **Docker Deployment** | |
| #### **Option 1: Quick Run** | |
| ```bash | |
| # πββοΈ Run directly from Docker Hub (if available) | |
| docker run -p 8501:8501 alidenewade/drug-discovery-pipeline | |
| ``` | |
| #### **Option 2: Build from Source** | |
| ```bash | |
| # π¨ Build the Docker image | |
| docker build -t drug-discovery-pipeline . | |
| # π Run the container | |
| docker run -p 8501:8501 drug-discovery-pipeline | |
| ``` | |
| #### **Docker Compose (Advanced)** | |
| ```yaml | |
| # docker-compose.yml | |
| version: '3.8' | |
| services: | |
| drug-discovery: | |
| build: . | |
| ports: | |
| - "8501:8501" | |
| environment: | |
| - STREAMLIT_SERVER_PORT=8501 | |
| volumes: | |
| - ./data:/app/data # Optional: for persistent data | |
| ``` | |
| ```bash | |
| # π³ Deploy with Docker Compose | |
| docker-compose up -d | |
| ``` | |
| --- | |
| ## π Dependencies | |
| <details> | |
| <summary><strong>π¦ Click to view complete requirements.txt</strong></summary> | |
| ```txt | |
| # π₯οΈ Web Framework | |
| streamlit>=1.28.0 | |
| # π Data Processing | |
| pandas>=1.5.0 | |
| numpy>=1.24.0 | |
| # π Visualization | |
| matplotlib>=3.6.0 | |
| seaborn>=0.12.0 | |
| plotly>=5.15.0 | |
| # π Network & APIs | |
| requests>=2.28.0 | |
| # πΌοΈ Image Processing | |
| pillow>=9.5.0 | |
| # π§ͺ Cheminformatics | |
| rdkit>=2023.3.1 | |
| # 𧬠Bioinformatics | |
| biopython>=1.81 | |
| # π€ Machine Learning | |
| scikit-learn>=1.3.0 | |
| # π¨ 3D Molecular Visualization | |
| py3dmol>=2.0.0 | |
| # π§ Utilities | |
| streamlit-option-menu>=0.3.6 | |
| streamlit-aggrid>=0.3.4 | |
| ``` | |
| </details> | |
| --- | |
| ## π― Use Cases & Applications | |
| <div align="center"> | |
| | π **Educational** | π¬ **Research** | π **Industry** | | |
| |-------------------|-----------------|------------------| | |
| | Drug discovery training | Proof of concept demos | Pipeline optimization | | |
| | Cheminformatics education | Method validation | AI strategy planning | | |
| | Bioinformatics learning | Collaborative research | Regulatory compliance | | |
| | AI in healthcare | Publication support | Risk assessment | | |
| </div> | |
| ### π **Educational Applications** | |
| - **π University Courses** - Pharmaceutical sciences, computational biology | |
| - **π©βπ« Training Programs** - Professional development in drug discovery | |
| - **π Self-Learning** - Interactive exploration of drug development concepts | |
| - **π― Workshops** - Hands-on demonstrations for conferences and seminars | |
| ### π¬ **Research Applications** | |
| - **π‘ Hypothesis Generation** - Explore structure-activity relationships | |
| - **π§ͺ Method Development** - Test computational approaches | |
| - **π Data Visualization** - Create publication-ready figures | |
| - **π€ Collaboration** - Share analyses with research teams | |
| --- | |
| ## π¬ Scientific Methodology | |
| ### **𧬠Molecular Analysis Framework** | |
| | Method | Description | Implementation | | |
| |--------|-------------|----------------| | |
| | **π Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors | | |
| | **π ADMET Profiling** | Pharmacokinetic predictions | Machine learning models | | |
| | **β οΈ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms | | |
| | **π SAR Analysis** | Structure-activity relationships | Statistical correlation analysis | | |
| ### **π Data Integration Pipeline** | |
| ```mermaid | |
| graph LR | |
| A[𧬠Structural Data] --> D[π Integration Engine] | |
| B[π Chemical Data] --> D | |
| C[π Biological Data] --> D | |
| D --> E[π€ AI Analysis] | |
| E --> F[π Results Dashboard] | |
| ``` | |
| --- | |
| ## β οΈ Important Disclaimers | |
| <div align="center"> | |
| > **π¨ FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY** | |
| </div> | |
| | β οΈ **Limitation** | π **Details** | | |
| |-------------------|----------------| | |
| | **π Educational Tool** | Demonstration purposes only, not for actual drug development | | |
| | **π² Simulated Data** | Some analyses use simulated data for illustration | | |
| | **π Regulatory Compliance** | Consult regulatory agencies for actual submissions | | |
| | **π¨ββοΈ Professional Use** | Real development requires validated, regulated systems | | |
| | **π¬ Research Grade** | Requires validation for production use | | |
| --- | |
| ## π€ Contributing | |
| We welcome contributions from the community! Here's how you can help: | |
| ### **π οΈ Development Guidelines** | |
| ```bash | |
| # π΄ Fork the repository | |
| git fork https://github.com/username/drug-discovery-pipeline | |
| # πΏ Create a feature branch | |
| git checkout -b feature/amazing-feature | |
| # π» Make your changes | |
| # ... code changes ... | |
| # β Test your changes | |
| python -m pytest tests/ | |
| # π Commit your changes | |
| git commit -m "Add amazing feature" | |
| # π Push to your branch | |
| git push origin feature/amazing-feature | |
| # π Create a Pull Request | |
| ``` | |
| ### **π Contribution Areas** | |
| - **π Bug Fixes** - Fix issues and improve stability | |
| - **β¨ New Features** - Add new analysis methods or visualizations | |
| - **π Documentation** - Improve README, add tutorials | |
| - **π§ͺ Testing** - Expand test coverage | |
| - **π¨ UI/UX** - Enhance user interface and experience | |
| - **β‘ Performance** - Optimize for speed and memory usage | |
| ### **π Code Standards** | |
| - **π Python Style** - Follow PEP 8 guidelines | |
| - **π Documentation** - Add docstrings and comments | |
| - **π§ͺ Testing** - Include unit tests for new features | |
| - **π§ Type Hints** - Use type annotations where applicable | |
| --- | |
| ## π Support & Community | |
| <div align="center"> | |
| ### **π¬ Get Help** | |
| [](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) | |
| </div> | |
| | π **Issue Type** | π **Where to Go** | | |
| |------------------|-------------------| | |
| | **π Bug Reports** | GitHub Issues (if available) | | |
| | **π‘ Feature Requests** | Hugging Face Discussions | | |
| | **β Usage Questions** | Community Tab on HF Space | | |
| | **π Documentation** | README and inline help | | |
| --- | |
| ## π License & Citation | |
| ### **π License** | |
| This project is licensed under the **MIT License** - see the LICENSE file for details. | |
| ### **π Citation** | |
| If you use this tool in your research or education, please cite: | |
| ```bibtex | |
| @software{drug_discovery_pipeline_2024, | |
| title={AI-Powered Drug Discovery Pipeline}, | |
| author={alidenewade}, | |
| year={2024}, | |
| url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline}, | |
| note={Interactive demonstration of AI in pharmaceutical development} | |
| } | |
| ``` | |
| --- | |
| ## π Acknowledgments | |
| <div align="center"> | |
| **Built with β€οΈ by the open-source community** | |
| </div> | |
| | ποΈ **Organization** | π― **Contribution** | | |
| |---------------------|---------------------| | |
| | **π§ͺ RDKit Community** | Excellent cheminformatics tools and algorithms | | |
| | **ποΈ PDB & NCBI** | Open access to biological and structural data | | |
| | **π₯οΈ Streamlit Team** | Intuitive web application framework | | |
| | **𧬠BioPython** | Comprehensive biological computation tools | | |
| | **π€ Scikit-learn** | Machine learning algorithms and utilities | | |
| | **π¨ py3Dmol** | Beautiful 3D molecular visualization | | |
| | **π¬ Scientific Community** | Advancing computational drug discovery | | |
| --- | |
| ## π Quick Links | |
| <div align="center"> | |
| | π **Action** | π **Link** | | |
| |---------------|-------------| | |
| | **π Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) | | |
| | **π€ Author Profile** | [alidenewade](https://huggingface.co/alidenewade) | | |
| | **π¬ ORCID** | [0009-0007-0069-4646](https://orcid.org/0009-0007-0069-4646) | | |
| | **π ResearchGate** | [Ali Denewade](https://www.researchgate.net/profile/Ali-Denewade) | | |
| | **π¬ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) | | |
| | **π Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) | | |
| --- | |
| <sub>β **Star this project if you find it useful!** β</sub> | |
| </div> |