alidenewade's picture
Update README.md
d337468 verified
---
title: Drug Discovery Pipeline
emoji: 🐠
colorFrom: purple
colorTo: green
sdk: docker
pinned: false
license: mit
short_description: AI-Powered Drug Discovery Pipeline Demo
---
# πŸ”¬ AI-Powered Drug Discovery Pipeline
<div align="center">
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg?style=for-the-badge)](https://opensource.org/licenses/MIT)
[![Python](https://img.shields.io/badge/python-3.8+-blue.svg?style=for-the-badge&logo=python&logoColor=white)](https://www.python.org/)
[![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)](https://www.docker.com/)
**An interactive demonstration of how artificial intelligence and computational tools can accelerate the drug discovery process from target identification to post-market surveillance.**
[πŸš€ **Try Live Demo**](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) β€’ [πŸ“– **Documentation**](#-overview) β€’ [πŸ› οΈ **Installation**](#-installation--usage) β€’ [🀝 **Contribute**](#-contributing)
</div>
---
## 🎯 Overview
This comprehensive application integrates the four major phases of pharmaceutical drug development into a single, interactive web interface. Built with cutting-edge AI and computational biology tools, it demonstrates how modern technology can accelerate and optimize the traditionally lengthy drug discovery process.
### πŸ”„ Pipeline Phases
<table>
<tr>
<td width="25%" align="center">
**🎯 Phase 1**
<br>
**Discovery & Target ID**
<br>
<sub>Protein analysis & compound screening</sub>
</td>
<td width="25%" align="center">
**πŸ§ͺ Phase 2**
<br>
**Lead Generation**
<br>
<sub>Virtual screening & ADMET prediction</sub>
</td>
<td width="25%" align="center">
**πŸ”¬ Phase 3**
<br>
**Preclinical Development**
<br>
<sub>Molecular analysis & toxicity testing</sub>
</td>
<td width="25%" align="center">
**πŸ“‹ Phase 4**
<br>
**Implementation**
<br>
<sub>Regulatory docs & pharmacovigilance</sub>
</td>
</tr>
</table>
---
## ✨ Key Features
### 🎯 **Phase 1: Discovery & Target Identification**
- **🧬 Protein Structure Fetching** - Retrieve 3D structures from PDB database
- **πŸ” FASTA Sequence Analysis** - Fetch and analyze protein sequences from NCBI
- **πŸ“Š Interactive 3D Visualization** - Explore protein structures with py3Dmol
- **βš—οΈ Molecular Property Calculation** - Compute physicochemical properties using RDKit
- **πŸ“ˆ Drug-Likeness Assessment** - Evaluate compounds using Lipinski's Rule of Five
- **πŸ“Š Properties Dashboard** - Visualize molecular properties with interactive plots
### πŸ§ͺ **Phase 2: Lead Generation & Optimization**
- **🎯 Virtual Screening Simulation** - Rank compounds by predicted binding affinity
- **πŸ’Š ADMET Prediction** - Assess Absorption, Distribution, Metabolism, Excretion, and Toxicity
- **πŸ”¬ 2D/3D Molecular Visualization** - Interactive molecule viewers with dark theme
- **πŸ”— Protein-Ligand Interaction** - Visualize binding sites and molecular interactions
- **πŸ“‹ Lead Compound Analysis** - Analyze drugs like Oseltamivir, Zanamivir, Aspirin, and Ibuprofen
### πŸ”¬ **Phase 3: Preclinical Development**
- **πŸ“Š Comprehensive Property Analysis** - Extended molecular descriptor calculations
- **πŸ€– AI-Powered Toxicity Prediction** - Machine learning model for toxicity risk assessment
- **🧬 Advanced Compound Profiling** - Analysis of clinical candidates including Remdesivir and Penicillin G
- **🎨 3D Molecular Gallery** - Interactive visualization of compound libraries
### πŸ“‹ **Phase 4: Implementation & Post-Market**
- **πŸ“„ Regulatory Documentation** - AI/ML model documentation templates for FDA submission
- **⚠️ Pharmacovigilance Simulation** - Real-world data analysis for adverse event detection
- **πŸ›‘οΈ Ethical Framework** - Guidelines for responsible AI in healthcare
- **πŸ“ˆ Adverse Event Analysis** - Statistical analysis and visualization of safety data
---
## πŸ› οΈ Technical Stack
<div align="center">
### **Core Technologies**
| Category | Technologies |
|----------|-------------|
| **πŸ–₯️ Framework** | ![Streamlit](https://img.shields.io/badge/Streamlit-FF4B4B?style=flat-square&logo=streamlit&logoColor=white) |
| **πŸ§ͺ Cheminformatics** | ![RDKit](https://img.shields.io/badge/RDKit-2E8B57?style=flat-square) |
| **🧬 Bioinformatics** | ![BioPython](https://img.shields.io/badge/BioPython-4169E1?style=flat-square) |
| **🎨 Visualization** | ![py3Dmol](https://img.shields.io/badge/py3Dmol-FF6347?style=flat-square) ![Matplotlib](https://img.shields.io/badge/Matplotlib-11557c?style=flat-square) |
| **πŸ€– Machine Learning** | ![Scikit-learn](https://img.shields.io/badge/scikit--learn-F7931E?style=flat-square&logo=scikit-learn&logoColor=white) |
### **Data Sources**
| Source | Description |
|--------|-------------|
| **πŸ›οΈ PDB** | Protein Data Bank - 3D protein structures |
| **🧬 NCBI** | Protein sequences and biological data |
| **πŸ’Š ChEMBL** | Bioactivity database (referenced) |
</div>
---
## πŸš€ Installation & Usage
### 🌐 **Quick Start - Hugging Face Spaces**
The easiest way to explore the pipeline:
```bash
πŸ”— https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline
```
> **No installation required!** Simply click the link above to start exploring.
### πŸ’» **Local Development**
#### **Prerequisites**
- Python 3.8 or higher
- Git
#### **Setup**
```bash
# πŸ“₯ Clone the repository
git clone <repository-url>
cd drug-discovery-pipeline
# πŸ”§ Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# πŸ“¦ Install dependencies
pip install -r requirements.txt
# πŸš€ Launch the application
streamlit run app.py
```
#### **Access the Application**
```
🌐 Local URL: http://localhost:8501
```
### 🐳 **Docker Deployment**
#### **Option 1: Quick Run**
```bash
# πŸƒβ€β™‚οΈ Run directly from Docker Hub (if available)
docker run -p 8501:8501 alidenewade/drug-discovery-pipeline
```
#### **Option 2: Build from Source**
```bash
# πŸ”¨ Build the Docker image
docker build -t drug-discovery-pipeline .
# πŸš€ Run the container
docker run -p 8501:8501 drug-discovery-pipeline
```
#### **Docker Compose (Advanced)**
```yaml
# docker-compose.yml
version: '3.8'
services:
drug-discovery:
build: .
ports:
- "8501:8501"
environment:
- STREAMLIT_SERVER_PORT=8501
volumes:
- ./data:/app/data # Optional: for persistent data
```
```bash
# 🐳 Deploy with Docker Compose
docker-compose up -d
```
---
## πŸ“‹ Dependencies
<details>
<summary><strong>πŸ“¦ Click to view complete requirements.txt</strong></summary>
```txt
# πŸ–₯️ Web Framework
streamlit>=1.28.0
# πŸ“Š Data Processing
pandas>=1.5.0
numpy>=1.24.0
# πŸ“ˆ Visualization
matplotlib>=3.6.0
seaborn>=0.12.0
plotly>=5.15.0
# 🌐 Network & APIs
requests>=2.28.0
# πŸ–ΌοΈ Image Processing
pillow>=9.5.0
# πŸ§ͺ Cheminformatics
rdkit>=2023.3.1
# 🧬 Bioinformatics
biopython>=1.81
# πŸ€– Machine Learning
scikit-learn>=1.3.0
# 🎨 3D Molecular Visualization
py3dmol>=2.0.0
# πŸ”§ Utilities
streamlit-option-menu>=0.3.6
streamlit-aggrid>=0.3.4
```
</details>
---
## 🎯 Use Cases & Applications
<div align="center">
| πŸŽ“ **Educational** | πŸ”¬ **Research** | 🏭 **Industry** |
|-------------------|-----------------|------------------|
| Drug discovery training | Proof of concept demos | Pipeline optimization |
| Cheminformatics education | Method validation | AI strategy planning |
| Bioinformatics learning | Collaborative research | Regulatory compliance |
| AI in healthcare | Publication support | Risk assessment |
</div>
### πŸ“š **Educational Applications**
- **πŸŽ“ University Courses** - Pharmaceutical sciences, computational biology
- **πŸ‘©β€πŸ« Training Programs** - Professional development in drug discovery
- **πŸ“– Self-Learning** - Interactive exploration of drug development concepts
- **🎯 Workshops** - Hands-on demonstrations for conferences and seminars
### πŸ”¬ **Research Applications**
- **πŸ’‘ Hypothesis Generation** - Explore structure-activity relationships
- **πŸ§ͺ Method Development** - Test computational approaches
- **πŸ“Š Data Visualization** - Create publication-ready figures
- **🀝 Collaboration** - Share analyses with research teams
---
## πŸ”¬ Scientific Methodology
### **🧬 Molecular Analysis Framework**
| Method | Description | Implementation |
|--------|-------------|----------------|
| **πŸ“ Lipinski's Rule of Five** | Drug-likeness assessment | RDKit molecular descriptors |
| **πŸ’Š ADMET Profiling** | Pharmacokinetic predictions | Machine learning models |
| **⚠️ Toxicity Modeling** | Safety risk assessment | Ensemble ML algorithms |
| **πŸ”— SAR Analysis** | Structure-activity relationships | Statistical correlation analysis |
### **πŸ“Š Data Integration Pipeline**
```mermaid
graph LR
A[🧬 Structural Data] --> D[πŸ”„ Integration Engine]
B[πŸ“Š Chemical Data] --> D
C[πŸ“ˆ Biological Data] --> D
D --> E[πŸ€– AI Analysis]
E --> F[πŸ“‹ Results Dashboard]
```
---
## ⚠️ Important Disclaimers
<div align="center">
> **🚨 FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**
</div>
| ⚠️ **Limitation** | πŸ“ **Details** |
|-------------------|----------------|
| **πŸŽ“ Educational Tool** | Demonstration purposes only, not for actual drug development |
| **🎲 Simulated Data** | Some analyses use simulated data for illustration |
| **πŸ“‹ Regulatory Compliance** | Consult regulatory agencies for actual submissions |
| **πŸ‘¨β€βš•οΈ Professional Use** | Real development requires validated, regulated systems |
| **πŸ”¬ Research Grade** | Requires validation for production use |
---
## 🀝 Contributing
We welcome contributions from the community! Here's how you can help:
### **πŸ› οΈ Development Guidelines**
```bash
# 🍴 Fork the repository
git fork https://github.com/username/drug-discovery-pipeline
# 🌿 Create a feature branch
git checkout -b feature/amazing-feature
# πŸ’» Make your changes
# ... code changes ...
# βœ… Test your changes
python -m pytest tests/
# πŸ“ Commit your changes
git commit -m "Add amazing feature"
# πŸš€ Push to your branch
git push origin feature/amazing-feature
# πŸ”„ Create a Pull Request
```
### **πŸ“‹ Contribution Areas**
- **πŸ› Bug Fixes** - Fix issues and improve stability
- **✨ New Features** - Add new analysis methods or visualizations
- **πŸ“š Documentation** - Improve README, add tutorials
- **πŸ§ͺ Testing** - Expand test coverage
- **🎨 UI/UX** - Enhance user interface and experience
- **⚑ Performance** - Optimize for speed and memory usage
### **πŸ“ Code Standards**
- **🐍 Python Style** - Follow PEP 8 guidelines
- **πŸ“ Documentation** - Add docstrings and comments
- **πŸ§ͺ Testing** - Include unit tests for new features
- **πŸ”§ Type Hints** - Use type annotations where applicable
---
## πŸ“ž Support & Community
<div align="center">
### **πŸ’¬ Get Help**
[![Hugging Face Discussions](https://img.shields.io/badge/πŸ€—%20Discussions-Join%20Community-yellow?style=for-the-badge)](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions)
</div>
| πŸ†˜ **Issue Type** | πŸ”— **Where to Go** |
|------------------|-------------------|
| **πŸ› Bug Reports** | GitHub Issues (if available) |
| **πŸ’‘ Feature Requests** | Hugging Face Discussions |
| **❓ Usage Questions** | Community Tab on HF Space |
| **πŸ“š Documentation** | README and inline help |
---
## πŸ“„ License & Citation
### **πŸ“œ License**
This project is licensed under the **MIT License** - see the LICENSE file for details.
### **πŸ“– Citation**
If you use this tool in your research or education, please cite:
```bibtex
@software{drug_discovery_pipeline_2024,
title={AI-Powered Drug Discovery Pipeline},
author={alidenewade},
year={2024},
url={https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline},
note={Interactive demonstration of AI in pharmaceutical development}
}
```
---
## πŸ™ Acknowledgments
<div align="center">
**Built with ❀️ by the open-source community**
</div>
| πŸ›οΈ **Organization** | 🎯 **Contribution** |
|---------------------|---------------------|
| **πŸ§ͺ RDKit Community** | Excellent cheminformatics tools and algorithms |
| **πŸ›οΈ PDB & NCBI** | Open access to biological and structural data |
| **πŸ–₯️ Streamlit Team** | Intuitive web application framework |
| **🧬 BioPython** | Comprehensive biological computation tools |
| **πŸ€– Scikit-learn** | Machine learning algorithms and utilities |
| **🎨 py3Dmol** | Beautiful 3D molecular visualization |
| **πŸ”¬ Scientific Community** | Advancing computational drug discovery |
---
## πŸ”— Quick Links
<div align="center">
| πŸš€ **Action** | πŸ”— **Link** |
|---------------|-------------|
| **🌐 Live Demo** | [Try Now](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
| **πŸ‘€ Author Profile** | [alidenewade](https://huggingface.co/alidenewade) |
| **πŸ”¬ ORCID** | [0009-0007-0069-4646](https://orcid.org/0009-0007-0069-4646) |
| **πŸ“š ResearchGate** | [Ali Denewade](https://www.researchgate.net/profile/Ali-Denewade) |
| **πŸ’¬ Discussions** | [Community](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline/discussions) |
| **πŸ“Š Analytics** | [Space Stats](https://huggingface.co/spaces/alidenewade/drug-discovery-pipeline) |
---
<sub>⭐ **Star this project if you find it useful!** ⭐</sub>
</div>