Spaces:
Runtime error
Runtime error
File size: 6,735 Bytes
7199111 8ecf185 7199111 8ecf185 3fac891 f58a881 8ecf185 f58a881 3fac891 3657998 f58a881 088b445 3fac891 f58a881 3657998 f58a881 8ecf185 f58a881 290eb90 f58a881 8ff9a4c c458411 3657998 c458411 3657998 c458411 3657998 c458411 3657998 c458411 17aa4ec c458411 bbcce29 c458411 bbcce29 c458411 8510d34 c458411 bbcce29 c458411 9eb9696 c458411 cad92ea c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 b881cfe c458411 088b445 7199111 bbcce29 7199111 8ecf185 9d9428d bbcce29 7199111 9eb9696 bbcce29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from flask import *
from PIL import Image
import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime
############################################
# import matplotlib.pyplot as plt
# import pylab # this allows you to control figure size
# pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
# import io
# import streamlit as st
# bytes_data=None
from flask_socketio import SocketIO,emit
import base64
##################################################3
# import gradio as gr
app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret!'
socket = SocketIO(app,async_mode="eventlet")
def base64_to_image(base64_string):
# Extract the base64 encoded binary data from the input string
base64_data = base64_string.split(",")[1]
# Decode the base64 data to bytes
image_bytes = base64.b64decode(base64_data)
# Convert the bytes to numpy array
image_array = np.frombuffer(image_bytes, dtype=np.uint8)
# Decode the numpy array as an image using OpenCV
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
return image
@socket.on("connect")
def test_connect():
print("Connected")
emit("my response", {"data": "Connected"})
@socket.on("image")
def receive_image(image):
# Decode the base64-encoded image data
image = base64_to_image(image)
image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
# emit("processed_image", image)
# Make the image a numpy array and reshape it to the models input shape.
image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
image = (image / 127.5) - 1
# Predicts the model
prediction = model.predict(image)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
emit("result",{"name":str(class_name),"score":str(confidence_score)})
# flag1 = True
# @app.route('/at')
# def testme():
# global flag1
# # return "i am in testme"
# while flag1 is True:
# img_file_buffer=st.camera_input("Take a picture")
# if img_file_buffer is not None:
# test_image = Image.open(img_file_buffer)
# st.image(test_image, use_column_width=True)
# if bytes_data is None:
# flag1 = False
# st.stop()
# def attend():
# # Face recognition variables
# known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
# known_face_encodings = []
# # Load known face encodings
# sir_image = face_recognition.load_image_file("photos/sir.jpeg")
# sir_encoding = face_recognition.face_encodings(sir_image)[0]
# vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
# vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
# lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
# lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
# jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
# jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
# maam_image = face_recognition.load_image_file("photos/maam.png")
# maam_encoding = face_recognition.face_encodings(maam_image)[0]
# known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
# students = known_faces_names.copy()
# face_locations = []
# face_encodings = []
# face_names = []
# now = datetime.now()
# current_date = now.strftime("%Y-%m-%d")
# csv_file = open(f"{current_date}.csv", "a+", newline="")
# csv_writer = csv.writer(csv_file)
# # Function to run face recognition
# def run_face_recognition():
# video_capture = cv2.VideoCapture(0)
# s = True
# existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file
# while s:
# _, frame = video_capture.read()
# small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# rgb_small_frame = small_frame[:, :, ::-1]
# face_locations = face_recognition.face_locations(rgb_small_frame)
# face_encodings = face_recognition.face_encodings(small_frame, face_locations)
# face_names = []
# for face_encoding in face_encodings:
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
# name = ""
# face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
# best_match_index = np.argmin(face_distance)
# if matches[best_match_index]:
# name = known_faces_names[best_match_index]
# face_names.append(name)
# for name in face_names:
# if name in known_faces_names and name in students and name not in existing_names:
# students.remove(name)
# print(students)
# print(f"Attendance recorded for {name}")
# current_time = now.strftime("%H-%M-%S")
# csv_writer.writerow([name, current_time, "Present"])
# existing_names.add(name) # Add the name to the set of existing names
# s = False # Set s to False to exit the loop after recording attendance
# break # Break the loop once attendance has been recorded for a name
# cv2.imshow("Attendance System", frame)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
# video_capture.release()
# cv2.destroyAllWindows()
# csv_file.close()
# # Call the function to run face recognition
# run_face_recognition()
# return redirect(url_for('show_table'))
###########################################################################
@app.route('/table')
def show_table():
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Read the CSV file to get attendance data
attendance=[]
try:
with open(f"{current_date}.csv", newline="") as csv_file:
csv_reader = csv.reader(csv_file)
attendance = list(csv_reader)
except FileNotFoundError:
pass
# Render the table.html template and pass the attendance data
return render_template('attendance.html', attendance=attendance)
@app.route("/")
def home():
return render_template('index.html')
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|