ai-text-humanizer / README.md
SidddhantJain
Add live demo links and dependency test file
bff7fa2

A newer version of the Gradio SDK is available: 5.44.1

Upgrade
metadata
title: AI Text Humanizer & Detector Pro
emoji: ๐Ÿค–โžก๏ธ๐Ÿ‘จ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
short_description: Transform AI text to natural, human-like writing
tags:
  - text-processing
  - ai-detection
  - humanization
  - nlp
  - gradio

๐Ÿค–โžก๏ธ๐Ÿ‘จ AI Text Humanizer

Python Gradio License Status Contributions Hugging Face Spaces

GitHub Stars GitHub Forks GitHub Issues GitHub Pull Requests

๐ŸŽฏ Transform robotic AI text into natural, human-like writing

๐Ÿš€ Try Live Demo

๐Ÿš€ Quick Start โ€ข ๐Ÿ“– Documentation โ€ข ๐Ÿ”ง Features โ€ข ๐Ÿ’ก Examples โ€ข ๐Ÿค Contributing


An advanced tool to transform robotic, AI-generated text into natural, human-like writing that can bypass AI detection tools.

๐Ÿš€ Features

๐ŸŽฏ Core Capabilities

  • ๐Ÿค– Multiple AI Models: T5 & Pegasus paraphrasing
  • ๐Ÿ“ Advanced Techniques: Vocabulary diversification
  • ๐Ÿ”„ Batch Processing: Handle multiple texts/files
  • ๐ŸŽ“ Academic Focus: Preserves professional tone
  • ๐Ÿ›ก๏ธ Undetectable Output: Bypasses AI detection
  • ๐Ÿ–ฅ๏ธ Multiple Interfaces: Simple, advanced & batch versions

โšก Performance Features

  • ๐Ÿš€ Fast Processing: Optimized algorithms
  • ๐Ÿ’พ Memory Efficient: Smart chunking system
  • ๐Ÿ”ง Error Handling: Graceful fallbacks
  • ๐Ÿ“Š Quality Control: Maintains meaning integrity
  • ๐ŸŒ Web Interface: User-friendly Gradio UI
  • ๐Ÿ“ฑ Responsive Design: Works on all devices

๐Ÿ“ Project Structure

๐Ÿ“ฆ AI Text Humanizer
โ”œโ”€โ”€ ๐ŸŽฏ humanizer_app.py      # Advanced multi-model version
โ”œโ”€โ”€ ๐Ÿ”ง humanizer_simple.py   # Reliable single-model version  
โ”œโ”€โ”€ ๐Ÿ“Š humanizer_batch.py    # Batch processing for files
โ”œโ”€โ”€ ๐Ÿ“‹ requirements.txt      # Dependencies list
โ”œโ”€โ”€ ๐Ÿš€ app.py               # Deployment-ready version
โ””โ”€โ”€ ๐Ÿ“– README.md            # This documentation
File Purpose Best For
๐ŸŽฏ humanizer_app.py Advanced features with AI detection Maximum customization
๐Ÿ”ง humanizer_simple.py Single T5 model, reliable Quick & stable results
๐Ÿ“Š humanizer_batch.py Process multiple files Bulk text processing
๐Ÿš€ app.py Web deployment version Online hosting

๐Ÿ› ๏ธ Installation

๐Ÿ“‹ Prerequisites
  • Python Python 3.8 or higher
  • Memory 4GB+ RAM recommended
  • Storage 2GB+ free space for models

๐Ÿš€ Quick Setup

# ๐Ÿ“ฅ Clone the repository
git clone https://github.com/SidddhantJain/Humaniser-Sid.git
cd Humaniser-Sid

# ๐Ÿ Create virtual environment
python -m venv .venv

# โšก Activate environment
.venv\Scripts\activate  # Windows
source .venv/bin/activate  # Linux/Mac

# ๐Ÿ“ฆ Install dependencies
pip install -r requirements.txt

# ๐Ÿš€ Launch application
python humanizer_app.py

๐Ÿ”— Alternative Installation

๐ŸŽฏ Advanced Version

python humanizer_app.py

โœ… Full features
โœ… AI detection
โœ… Multiple models

๐Ÿ”ง Simple Version

python humanizer_simple.py

โœ… Single model
โœ… Fast & reliable
โœ… Lightweight

๐Ÿ“Š Batch Version

python humanizer_batch.py

โœ… File processing
โœ… CSV support
โœ… Bulk operations

๐ŸŽฏ Usage

Usage Demo

๐Ÿ–ฅ๏ธ Web Interface

  1. ๐Ÿš€ Launch: Run any Python file
  2. ๐ŸŒ Access: Open browser to http://127.0.0.1:7860
  3. ๐Ÿ“ Input: Paste your AI-generated text
  4. โš™๏ธ Configure: Select humanization level
  5. โœจ Transform: Click "Humanize" for natural output

๐ŸŽ›๏ธ Humanization Levels

Level Icon Description Use Case
Light ๐ŸŸข Basic paraphrasing Quick touch-ups
Medium ๐ŸŸก Paraphrasing + vocabulary + connectors Balanced improvement
Heavy ๐Ÿ”ด All techniques + structure changes Maximum humanization

๐Ÿ“Š Batch Processing Features

๐Ÿ“„ Text Files (.txt)

  • ๐Ÿ“ Processes paragraph by paragraph
  • ๐Ÿ”„ Maintains formatting
  • ๐Ÿ’พ Saves processed versions
  • โšก Handles large documents

๐Ÿ“ˆ CSV Files (.csv)

  • ๐Ÿ“Š Adds 'humanized' column
  • ๐Ÿ”ง Preserves original data
  • ๐Ÿ“‹ Batch processes multiple rows
  • ๐Ÿ“ค Exports enhanced datasets

๐Ÿ”ง How It Works

AI Models NLTK Custom

๐Ÿง  Advanced Techniques Pipeline

graph LR
    A[๐Ÿค– AI Text Input] --> B[๐Ÿ“ Multi-Model Paraphrasing]
    B --> C[๐Ÿ“š Vocabulary Diversification]
    C --> D[๐Ÿ”„ Sentence Structure Variation]
    D --> E[๐Ÿ”— Academic Connector Integration]
    E --> F[๐ŸŽฏ Hedging Language Addition]
    F --> G[โœ‚๏ธ Smart Chunking]
    G --> H[๐Ÿ‘จ Human-like Output]

๐ŸŽฏ Core Algorithms

  1. ๐Ÿ”„ Multi-Model Paraphrasing: Avoids single-model patterns
  2. ๐Ÿ“– Vocabulary Diversification: Contextual synonym replacement
  3. ๐Ÿ—๏ธ Sentence Structure Variation: Natural flow modification
  4. ๐Ÿ”— Academic Connector Integration: Professional transitions
  5. ๐ŸŽญ Hedging Language: Academic tone preservation
  6. โœ‚๏ธ Smart Chunking: Optimal text processing

๐Ÿค– AI Models Stack

  • T5 Primary Model
  • Pegasus Secondary Model
  • NLTK Synonym Engine
  • Custom Flow Optimization

๐Ÿ“Š Example Transformations

Before After

๐Ÿค– Input (AI-generated)

The implementation of machine learning algorithms 
in data processing systems demonstrates significant 
improvements in efficiency and accuracy metrics 
across various benchmark datasets.

๐Ÿ“ˆ AI Detection Score: 85% (Very High)

๐Ÿ‘จ Output (Humanized)

Implementing machine learning algorithms within 
data processing frameworks shows notable 
enhancements in both efficiency and accuracy 
measures when evaluated across different 
benchmark datasets. These improvements suggest 
that such approaches can effectively optimize 
computational performance.

๐Ÿ“‰ AI Detection Score: 23% (Low)

๐ŸŽฏ Quality Metrics

Readability Naturalness Academic_Tone Meaning_Preservation

๐ŸŽฎ Advanced Features

Multi-Level Processing

  • Processes texts of any length by intelligent chunking
  • Maintains context across chunks
  • Preserves academic integrity

Natural Variations

  • Dynamic vocabulary replacement
  • Contextual synonym selection
  • Academic phrase integration
  • Sentence flow optimization

Error Handling

  • Graceful fallbacks if models fail
  • Multiple backup techniques
  • Robust error recovery

๐Ÿ” Best Practices

  1. Input Quality: Use complete sentences and proper grammar
  2. Length Considerations: Works best with 50-1000 word chunks
  3. Context Preservation: Review output to ensure meaning is maintained
  4. Multiple Passes: For heavy humanization, consider multiple rounds
  5. Manual Review: Always review output for accuracy and flow

๏ฟฝ๏ธ Troubleshooting

Support

๐Ÿšจ Model Loading Errors

Symptoms: Models fail to download or load

Solutions:

  • โœ… Install protobuf: pip install protobuf
  • ๐ŸŒ Check internet connection for model downloads
  • ๐Ÿ”ง Try simple version: python humanizer_simple.py
  • ๐Ÿ”„ Clear cache: Delete .cache folder
๐Ÿ’พ Memory Issues

Symptoms: Out of memory errors, slow processing

Solutions:

  • โœ‚๏ธ Reduce text chunk size (< 500 words)
  • ๐ŸŸข Use lighter humanization levels
  • ๐Ÿšซ Close other memory-intensive applications
  • ๐Ÿ’ป Consider upgrading RAM (8GB+ recommended)
โšก Performance Issues

Symptoms: Slow processing, timeouts

Solutions:

  • ๐ŸŽฏ Use GPU if available (torch.cuda.is_available())
  • ๐Ÿ“ Process smaller text chunks
  • ๐Ÿ”ง Try simple version for faster results
  • ๐Ÿ•’ Allow more time for first run (model download)

โš–๏ธ Ethical Usage

Ethics Education

โœ… Appropriate Use Cases

  • ๐Ÿ“š Academic Writing: Improving naturalness
  • ๐ŸŽ“ Learning: Understanding language patterns
  • ๐Ÿ“ Content Enhancement: Quality improvement
  • ๐Ÿ”ฌ Research: Studying AI detection
  • ๐Ÿ› ๏ธ Content Optimization: Professional polish

๐Ÿšซ Prohibited Uses

  • ๐Ÿ“‹ Plagiarism: Misrepresenting authorship
  • ๐ŸŽ“ Academic Dishonesty: Violating policies
  • ๏ฟฝ๏ธ Deceptive Purposes: Misleading readers
  • ๐Ÿ’ผ Professional Fraud: Fake credentials
  • ๐Ÿซ Institutional Violations: Breaking rules

๐ŸŽฏ Best Practices

Transparency Attribution Review Guidelines

๐Ÿค Contributing

Contributors

GitHub issues GitHub pull requests

๐ŸŽฏ How to Contribute

๐Ÿ› Bug Reports

  • ๐Ÿ“ Use issue templates
  • ๐Ÿ” Provide detailed steps
  • ๐Ÿ“Š Include system info
  • ๐Ÿ–ผ๏ธ Add screenshots if relevant

โœจ Feature Requests

  • ๐Ÿ’ก Suggest improvements
  • ๐Ÿ“‹ Explain use cases
  • ๐ŸŽฏ Define requirements
  • ๐Ÿ”„ Discuss implementation

๐Ÿ”ง Code Contributions

  • ๐Ÿด Fork the repository
  • ๐ŸŒฟ Create feature branch
  • โœ… Add tests if needed
  • ๐Ÿ“ค Submit pull request

๐Ÿ“– Documentation

  • ๐Ÿ“š Improve README
  • ๐Ÿ“ Add examples
  • ๐Ÿ” Fix typos
  • ๐ŸŒ Translate content

๐Ÿ› ๏ธ Development Areas

Feel free to contribute to:

  • ๐Ÿค– Add new AI models for better paraphrasing
  • ๐Ÿ”ง Enhance techniques for more natural output
  • ๐Ÿ› Report bugs and help with fixes
  • ๐Ÿ“Š Improve performance and optimization
  • ๐ŸŒ Add language support for international users
  • ๐Ÿ“ฑ UI/UX improvements for better user experience

๐Ÿ“„ License

License

MIT License - This project is for educational and research purposes. Please respect academic integrity and use responsibly.

๐Ÿ“‹ View Full License


๐Ÿ™ Acknowledgments

Made with โค๏ธ for better academic writing

Gradio Transformers Python

๐ŸŒŸ Star this repo if you found it helpful!

GitHub stars


๐Ÿ“ž Support & Contact

GitHub Email