Spaces:
Running
Running
File size: 15,758 Bytes
97819aa 7e48b3c 97819aa 850a7ff 5ed41a9 bff7fa2 5ed41a9 bff7fa2 5ed41a9 bff7fa2 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 850a7ff 5ed41a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
---
title: AI Text Humanizer & Detector Pro
emoji: ๐คโก๏ธ๐จ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
short_description: Transform AI text to natural, human-like writing
tags:
- text-processing
- ai-detection
- humanization
- nlp
- gradio
---
# ๐คโก๏ธ๐จ AI Text Humanizer
<div align="center">





[](https://huggingface.co/spaces/Siddhant-Jain/ai-text-humanizer)
[](https://github.com/SidddhantJain/Humaniser-Sid/stargazers)
[](https://github.com/SidddhantJain/Humaniser-Sid/network/members)
[](https://github.com/SidddhantJain/Humaniser-Sid/issues)
[](https://github.com/SidddhantJain/Humaniser-Sid/pulls)
**๐ฏ Transform robotic AI text into natural, human-like writing**
[](https://huggingface.co/spaces/Siddhant-Jain/ai-text-humanizer)
[๐ Quick Start](#-installation) โข
[๐ Documentation](#-usage) โข
[๐ง Features](#-features) โข
[๐ก Examples](#-example-transformations) โข
[๐ค Contributing](#-contributing)
</div>
---
An advanced tool to transform robotic, AI-generated text into natural, human-like writing that can bypass AI detection tools.
## ๐ Features
<table>
<tr>
<td width="50%">
### ๐ฏ **Core Capabilities**
- ๐ค **Multiple AI Models**: T5 & Pegasus paraphrasing
- ๐ **Advanced Techniques**: Vocabulary diversification
- ๐ **Batch Processing**: Handle multiple texts/files
- ๐ **Academic Focus**: Preserves professional tone
- ๐ก๏ธ **Undetectable Output**: Bypasses AI detection
- ๐ฅ๏ธ **Multiple Interfaces**: Simple, advanced & batch versions
</td>
<td width="50%">
### โก **Performance Features**
- ๐ **Fast Processing**: Optimized algorithms
- ๐พ **Memory Efficient**: Smart chunking system
- ๐ง **Error Handling**: Graceful fallbacks
- ๐ **Quality Control**: Maintains meaning integrity
- ๐ **Web Interface**: User-friendly Gradio UI
- ๐ฑ **Responsive Design**: Works on all devices
</td>
</tr>
</table>
## ๐ Project Structure
```
๐ฆ AI Text Humanizer
โโโ ๐ฏ humanizer_app.py # Advanced multi-model version
โโโ ๐ง humanizer_simple.py # Reliable single-model version
โโโ ๐ humanizer_batch.py # Batch processing for files
โโโ ๐ requirements.txt # Dependencies list
โโโ ๐ app.py # Deployment-ready version
โโโ ๐ README.md # This documentation
```
<div align="center">
| File | Purpose | Best For |
|------|---------|----------|
| ๐ฏ `humanizer_app.py` | Advanced features with AI detection | Maximum customization |
| ๐ง `humanizer_simple.py` | Single T5 model, reliable | Quick & stable results |
| ๐ `humanizer_batch.py` | Process multiple files | Bulk text processing |
| ๐ `app.py` | Web deployment version | Online hosting |
</div>
## ๐ ๏ธ Installation
<details>
<summary>๐ <strong>Prerequisites</strong></summary>
-  Python 3.8 or higher
-  4GB+ RAM recommended
-  2GB+ free space for models
</details>
### ๐ Quick Setup
<div align="center">
```bash
# ๐ฅ Clone the repository
git clone https://github.com/SidddhantJain/Humaniser-Sid.git
cd Humaniser-Sid
# ๐ Create virtual environment
python -m venv .venv
# โก Activate environment
.venv\Scripts\activate # Windows
source .venv/bin/activate # Linux/Mac
# ๐ฆ Install dependencies
pip install -r requirements.txt
# ๐ Launch application
python humanizer_app.py
```
</div>
### ๐ Alternative Installation
<table>
<tr>
<td width="33%">
#### ๐ฏ **Advanced Version**
```bash
python humanizer_app.py
```
โ
Full features<br>
โ
AI detection<br>
โ
Multiple models
</td>
<td width="33%">
#### ๐ง **Simple Version**
```bash
python humanizer_simple.py
```
โ
Single model<br>
โ
Fast & reliable<br>
โ
Lightweight
</td>
<td width="33%">
#### ๐ **Batch Version**
```bash
python humanizer_batch.py
```
โ
File processing<br>
โ
CSV support<br>
โ
Bulk operations
</td>
</tr>
</table>
## ๐ฏ Usage
<div align="center">

</div>
### ๐ฅ๏ธ **Web Interface**
1. ๐ **Launch**: Run any Python file
2. ๐ **Access**: Open browser to `http://127.0.0.1:7860`
3. ๐ **Input**: Paste your AI-generated text
4. โ๏ธ **Configure**: Select humanization level
5. โจ **Transform**: Click "Humanize" for natural output
### ๐๏ธ **Humanization Levels**
<div align="center">
| Level | Icon | Description | Use Case |
|-------|------|-------------|----------|
| **Light** | ๐ข | Basic paraphrasing | Quick touch-ups |
| **Medium** | ๐ก | Paraphrasing + vocabulary + connectors | Balanced improvement |
| **Heavy** | ๐ด | All techniques + structure changes | Maximum humanization |
</div>
### ๐ **Batch Processing Features**
<table>
<tr>
<td width="50%">
#### ๐ **Text Files (.txt)**
- ๐ Processes paragraph by paragraph
- ๐ Maintains formatting
- ๐พ Saves processed versions
- โก Handles large documents
</td>
<td width="50%">
#### ๐ **CSV Files (.csv)**
- ๐ Adds 'humanized' column
- ๐ง Preserves original data
- ๐ Batch processes multiple rows
- ๐ค Exports enhanced datasets
</td>
</tr>
</table>
## ๐ง How It Works
<div align="center">



</div>
### ๐ง **Advanced Techniques Pipeline**
```mermaid
graph LR
A[๐ค AI Text Input] --> B[๐ Multi-Model Paraphrasing]
B --> C[๐ Vocabulary Diversification]
C --> D[๐ Sentence Structure Variation]
D --> E[๐ Academic Connector Integration]
E --> F[๐ฏ Hedging Language Addition]
F --> G[โ๏ธ Smart Chunking]
G --> H[๐จ Human-like Output]
```
<table>
<tr>
<td width="50%">
### ๐ฏ **Core Algorithms**
1. ๐ **Multi-Model Paraphrasing**: Avoids single-model patterns
2. ๐ **Vocabulary Diversification**: Contextual synonym replacement
3. ๐๏ธ **Sentence Structure Variation**: Natural flow modification
4. ๐ **Academic Connector Integration**: Professional transitions
5. ๐ญ **Hedging Language**: Academic tone preservation
6. โ๏ธ **Smart Chunking**: Optimal text processing
</td>
<td width="50%">
### ๐ค **AI Models Stack**
-  **Primary Model**
-  **Secondary Model**
-  **Synonym Engine**
-  **Flow Optimization**
</td>
</tr>
</table>
## ๐ Example Transformations
<div align="center">

</div>
<table>
<tr>
<td width="50%">
### ๐ค **Input (AI-generated)**
```
The implementation of machine learning algorithms
in data processing systems demonstrates significant
improvements in efficiency and accuracy metrics
across various benchmark datasets.
```
#### ๐ **AI Detection Score**: 85% (Very High)
</td>
<td width="50%">
### ๐จ **Output (Humanized)**
```
Implementing machine learning algorithms within
data processing frameworks shows notable
enhancements in both efficiency and accuracy
measures when evaluated across different
benchmark datasets. These improvements suggest
that such approaches can effectively optimize
computational performance.
```
#### ๐ **AI Detection Score**: 23% (Low)
</td>
</tr>
</table>
<div align="center">
### ๐ฏ **Quality Metrics**




</div>
## ๐ฎ Advanced Features
### Multi-Level Processing
- Processes texts of any length by intelligent chunking
- Maintains context across chunks
- Preserves academic integrity
### Natural Variations
- Dynamic vocabulary replacement
- Contextual synonym selection
- Academic phrase integration
- Sentence flow optimization
### Error Handling
- Graceful fallbacks if models fail
- Multiple backup techniques
- Robust error recovery
## ๐ Best Practices
1. **Input Quality**: Use complete sentences and proper grammar
2. **Length Considerations**: Works best with 50-1000 word chunks
3. **Context Preservation**: Review output to ensure meaning is maintained
4. **Multiple Passes**: For heavy humanization, consider multiple rounds
5. **Manual Review**: Always review output for accuracy and flow
## ๏ฟฝ๏ธ Troubleshooting
<div align="center">

</div>
<details>
<summary>๐จ <strong>Model Loading Errors</strong></summary>
**Symptoms**: Models fail to download or load
**Solutions**:
- โ
Install protobuf: `pip install protobuf`
- ๐ Check internet connection for model downloads
- ๐ง Try simple version: `python humanizer_simple.py`
- ๐ Clear cache: Delete `.cache` folder
</details>
<details>
<summary>๐พ <strong>Memory Issues</strong></summary>
**Symptoms**: Out of memory errors, slow processing
**Solutions**:
- โ๏ธ Reduce text chunk size (< 500 words)
- ๐ข Use lighter humanization levels
- ๐ซ Close other memory-intensive applications
- ๐ป Consider upgrading RAM (8GB+ recommended)
</details>
<details>
<summary>โก <strong>Performance Issues</strong></summary>
**Symptoms**: Slow processing, timeouts
**Solutions**:
- ๐ฏ Use GPU if available (`torch.cuda.is_available()`)
- ๐ Process smaller text chunks
- ๐ง Try simple version for faster results
- ๐ Allow more time for first run (model download)
</details>
## โ๏ธ Ethical Usage
<div align="center">


</div>
<table>
<tr>
<td width="50%">
### โ
**Appropriate Use Cases**
- ๐ **Academic Writing**: Improving naturalness
- ๐ **Learning**: Understanding language patterns
- ๐ **Content Enhancement**: Quality improvement
- ๐ฌ **Research**: Studying AI detection
- ๐ ๏ธ **Content Optimization**: Professional polish
</td>
<td width="50%">
### ๐ซ **Prohibited Uses**
- ๐ **Plagiarism**: Misrepresenting authorship
- ๐ **Academic Dishonesty**: Violating policies
- ๏ฟฝ๏ธ **Deceptive Purposes**: Misleading readers
- ๐ผ **Professional Fraud**: Fake credentials
- ๐ซ **Institutional Violations**: Breaking rules
</td>
</tr>
</table>
<div align="center">
### ๐ฏ **Best Practices**




</div>
## ๐ค Contributing
<div align="center">

[](https://github.com/SidddhantJain/Humaniser-Sid/issues)
[](https://github.com/SidddhantJain/Humaniser-Sid/pulls)
</div>
### ๐ฏ **How to Contribute**
<table>
<tr>
<td width="25%">
#### ๐ **Bug Reports**
- ๐ Use issue templates
- ๐ Provide detailed steps
- ๐ Include system info
- ๐ผ๏ธ Add screenshots if relevant
</td>
<td width="25%">
#### โจ **Feature Requests**
- ๐ก Suggest improvements
- ๐ Explain use cases
- ๐ฏ Define requirements
- ๐ Discuss implementation
</td>
<td width="25%">
#### ๐ง **Code Contributions**
- ๐ด Fork the repository
- ๐ฟ Create feature branch
- โ
Add tests if needed
- ๐ค Submit pull request
</td>
<td width="25%">
#### ๐ **Documentation**
- ๐ Improve README
- ๐ Add examples
- ๐ Fix typos
- ๐ Translate content
</td>
</tr>
</table>
### ๐ ๏ธ **Development Areas**
Feel free to contribute to:
- ๐ค **Add new AI models** for better paraphrasing
- ๐ง **Enhance techniques** for more natural output
- ๐ **Report bugs** and help with fixes
- ๐ **Improve performance** and optimization
- ๐ **Add language support** for international users
- ๐ฑ **UI/UX improvements** for better user experience
## ๐ License
<div align="center">

**MIT License** - This project is for educational and research purposes. Please respect academic integrity and use responsibly.
[๐ View Full License](LICENSE)
</div>
---
<div align="center">
## ๐ Acknowledgments
**Made with โค๏ธ for better academic writing**
[](https://gradio.app/)
[](https://huggingface.co/)
[](https://python.org/)
### ๐ **Star this repo if you found it helpful!**
[](https://github.com/SidddhantJain/Humaniser-Sid/stargazers)
---
**๐ Support & Contact**
[](https://github.com/SidddhantJain/Humaniser-Sid/issues)
[](mailto:[email protected])
</div>
|