Spaces:
Sleeping
Sleeping
File size: 6,187 Bytes
28f8c56 b598f3e cc17b6f 28f8c56 cc17b6f 26c257c 51a883e cc17b6f 9c21d4a e7bcdf0 9c21d4a cc17b6f 7e44175 28f8c56 e7bcdf0 f94d228 e7bcdf0 f94d228 e7bcdf0 f94d228 e7bcdf0 26c257c f94d228 287acbd 7e44175 287acbd 9c21d4a e7bcdf0 f94d228 e7bcdf0 f94d228 e7bcdf0 f94d228 287acbd f94d228 26c257c f94d228 26c257c 287acbd f94d228 26c257c f94d228 26c257c f94d228 26c257c f94d228 26c257c f94d228 26c257c f94d228 26c257c f94d228 26c257c f94d228 26c257c 0bef4b4 26c257c f94d228 26c257c f94d228 51a883e 26c257c fb44cbf f94d228 982538d fb44cbf 0bef4b4 26c257c 2b392fa 26c257c 2b392fa 26c257c 2b392fa 26c257c e19a001 f94d228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import matplotlib.pyplot as plt
device = torch.device('cpu')
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.float32,
device_map='cpu',
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
model_max_length=512,
padding_side="right",
use_fast=False,
trust_remote_code=True
)
chat_history = []
current_image = None
def extract_and_display_images(image_path):
npy_data = np.load(image_path)
if npy_data.ndim == 4 and npy_data.shape[1] == 32:
npy_data = npy_data[0]
elif npy_data.ndim != 3 or npy_data.shape[0] != 32:
return "Invalid .npy format. Expected (1, 32, 256, 256) or (32, 256, 256)."
fig, axes = plt.subplots(4, 8, figsize=(12, 6))
for i, ax in enumerate(axes.flat):
ax.imshow(npy_data[i], cmap='gray')
ax.axis('off')
output_path = "converted_image_preview.png"
plt.savefig(output_path, bbox_inches='tight')
plt.close()
return output_path
def upload_image(image):
global current_image
if image is None:
return "", None
current_image = image.name
preview_path = extract_and_display_images(current_image)
return "Image uploaded successfully!", preview_path
def process_question(question):
global current_image
if current_image is None:
return "Please upload an image first."
image_np = np.load(current_image)
image_tokens = "<im_patch>" * 256
input_txt = image_tokens + question
input_ids = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=torch.float32, device=device)
generation = model.generate(image_pt, input_ids, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
return generated_texts[0]
def chat_with_model(user_message):
global chat_history
if not user_message.strip():
return chat_history
response = process_question(user_message)
chat_history.append((user_message, response))
return chat_history
# Function to export chat history to a text file
def export_chat_history():
history_text = ""
for user_msg, model_reply in chat_history:
history_text += f"User: {user_msg}\nAI: {model_reply}\n\n"
with open("chat_history.txt", "w") as f:
f.write(history_text)
return "Chat history exported as chat_history.txt"
# UI
with gr.Blocks(css="""
body {
background: #f5f5f5;
font-family: 'Inter', sans-serif;
color: #333333;
}
h1 {
text-align: center;
font-size: 2em;
margin-bottom: 20px;
color: #222;
}
.gr-box {
background: #ffffff;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
}
.gr-chatbot-container {
overflow-y: auto;
max-height: 500px;
scroll-behavior: smooth;
}
.gr-chatbot-message {
margin-bottom: 10px;
padding: 8px;
border-radius: 8px;
background: #f5f5f5;
animation: fadeIn 0.5s ease-out;
}
.gr-button {
background-color: #4CAF50;
color: white;
border: none;
padding: 8px 16px;
border-radius: 6px;
cursor: pointer;
}
.gr-button:hover {
background-color: #45a049;
}
.gr-upload-btn {
background-color: #4CAF50;
color: white;
border-radius: 50%;
width: 50px;
height: 50px;
font-size: 24px;
display: flex;
align-items: center;
justify-content: center;
cursor: pointer;
border: none;
margin-top: 10px;
}
#loading-spinner {
display: none;
text-align: center;
}
#loading-spinner img {
width: 50px;
height: 50px;
}
@keyframes fadeIn {
0% { opacity: 0; }
100% { opacity: 1; }
}
""") as app:
gr.Markdown("# AI Powered Medical Image Analysis System")
with gr.Row():
with gr.Column(scale=1):
chatbot_ui = gr.Chatbot(value=[], label="Chat History")
with gr.Column(scale=2):
# Create the "+" button for uploading
upload_button = gr.Button("+", elem_id="upload_btn", visible=True, interactive=True)
upload_section = gr.File(label="Upload NPY Image", type="filepath", visible=False)
upload_status = gr.Textbox(label="Status", interactive=False)
preview_img = gr.Image(label="Image Preview", interactive=False)
message_input = gr.Textbox(placeholder="Type your question here...", label="Your Message")
send_button = gr.Button("Send")
export_button = gr.Button("Export Chat History")
loading_spinner = gr.HTML('<div id="loading-spinner"><img src="https://i.imgur.com/llf5Jjs.gif" alt="Loading..."></div>')
# Handle file upload when "+" button is clicked
upload_button.click(lambda: upload_section.update(visible=True), None, upload_section)
# Display loading spinner when uploading an image
upload_section.upload(lambda *args: loading_spinner.update("<div id='loading-spinner'><img src='https://i.imgur.com/llf5Jjs.gif' alt='Loading...'></div>"), upload_section, None)
upload_section.upload(upload_image, upload_section, [upload_status, preview_img])
# Display loading spinner while processing question
send_button.click(lambda *args: loading_spinner.update("<div id='loading-spinner'><img src='https://i.imgur.com/llf5Jjs.gif' alt='Loading...'></div>"), None, None)
send_button.click(chat_with_model, message_input, chatbot_ui)
send_button.click(lambda *args: loading_spinner.update(''), None, None)
message_input.submit(chat_with_model, message_input, chatbot_ui)
# Export chat history functionality
export_button.click(export_chat_history)
# Auto-focus typing box and scroll to bottom after message sent
message_input.submit(lambda: gr.update(focus=True), None, message_input)
send_button.click(lambda: gr.update(focus=True), None, message_input)
app.launch()
|