Spaces:
Running
Running
COMMIT
Browse files
app.py
CHANGED
@@ -1,64 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import simple_slice_viewer as ssv
|
5 |
+
import SimpleITK as sikt
|
6 |
import gradio as gr
|
|
|
7 |
|
8 |
+
device = torch.device('cpu') # Set to 'cuda' if using a GPU
|
9 |
+
dtype = torch.float32 # Data type for model processing
|
|
|
|
|
10 |
|
11 |
+
model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
|
12 |
+
proj_out_num = 256 # Number of projection outputs required for the image
|
13 |
|
14 |
+
# Load model and tokenizer
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_name_or_path,
|
17 |
+
torch_dtype=torch.float32,
|
18 |
+
device_map='cpu',
|
19 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
23 |
+
model_name_or_path,
|
24 |
+
model_max_length=512,
|
25 |
+
padding_side="right",
|
26 |
+
use_fast=False,
|
27 |
+
trust_remote_code=True
|
28 |
+
)
|
29 |
|
30 |
+
def process_image(image_path, question):
|
31 |
+
# Load the image
|
32 |
+
image_np = np.load(image_path) # Load the .npy image
|
33 |
+
image_tokens = "<im_patch>" * proj_out_num
|
34 |
+
input_txt = image_tokens + question
|
35 |
+
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
|
36 |
+
|
37 |
+
# Prepare image for model
|
38 |
+
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
39 |
+
|
40 |
+
# Generate model response
|
41 |
+
generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
|
42 |
+
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
43 |
+
|
44 |
+
return generated_texts[0]
|
45 |
+
|
46 |
+
# Gradio Interface
|
47 |
+
def gradio_interface(image, question):
|
48 |
+
response = process_image(image.name, question)
|
49 |
+
return response
|
50 |
+
|
51 |
+
# Gradio App
|
52 |
+
gr.Interface(
|
53 |
+
fn=gradio_interface,
|
54 |
+
inputs=[
|
55 |
+
gr.File(label="Upload .npy Image", type="filepath"), # For uploading .npy image
|
56 |
+
gr.Textbox(label="Enter your question", placeholder="Ask something about the image..."),
|
57 |
+
],
|
58 |
+
outputs=gr.Textbox(label="Model Response"),
|
59 |
+
title="Medical Image Analysis",
|
60 |
+
description="Upload a .npy image and ask a question to analyze it using the model."
|
61 |
+
).launch()
|