Rohith1112 commited on
Commit
b598f3e
·
verified ·
1 Parent(s): 0a7c920
Files changed (1) hide show
  1. app.py +54 -57
app.py CHANGED
@@ -1,64 +1,61 @@
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import simple_slice_viewer as ssv
5
+ import SimpleITK as sikt
6
  import gradio as gr
 
7
 
8
+ device = torch.device('cpu') # Set to 'cuda' if using a GPU
9
+ dtype = torch.float32 # Data type for model processing
 
 
10
 
11
+ model_name_or_path = 'GoodBaiBai88/M3D-LaMed-Phi-3-4B'
12
+ proj_out_num = 256 # Number of projection outputs required for the image
13
 
14
+ # Load model and tokenizer
15
+ model = AutoModelForCausalLM.from_pretrained(
16
+ model_name_or_path,
17
+ torch_dtype=torch.float32,
18
+ device_map='cpu',
19
+ trust_remote_code=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  )
21
 
22
+ tokenizer = AutoTokenizer.from_pretrained(
23
+ model_name_or_path,
24
+ model_max_length=512,
25
+ padding_side="right",
26
+ use_fast=False,
27
+ trust_remote_code=True
28
+ )
29
 
30
+ def process_image(image_path, question):
31
+ # Load the image
32
+ image_np = np.load(image_path) # Load the .npy image
33
+ image_tokens = "<im_patch>" * proj_out_num
34
+ input_txt = image_tokens + question
35
+ input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device)
36
+
37
+ # Prepare image for model
38
+ image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
39
+
40
+ # Generate model response
41
+ generation = model.generate(image_pt, input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
42
+ generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
43
+
44
+ return generated_texts[0]
45
+
46
+ # Gradio Interface
47
+ def gradio_interface(image, question):
48
+ response = process_image(image.name, question)
49
+ return response
50
+
51
+ # Gradio App
52
+ gr.Interface(
53
+ fn=gradio_interface,
54
+ inputs=[
55
+ gr.File(label="Upload .npy Image", type="filepath"), # For uploading .npy image
56
+ gr.Textbox(label="Enter your question", placeholder="Ask something about the image..."),
57
+ ],
58
+ outputs=gr.Textbox(label="Model Response"),
59
+ title="Medical Image Analysis",
60
+ description="Upload a .npy image and ask a question to analyze it using the model."
61
+ ).launch()