Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,113 +2,55 @@ import numpy as np
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
import io
|
7 |
|
8 |
# Model setup
|
9 |
-
device = torch.device(
|
10 |
-
dtype = torch.float32
|
11 |
-
model_name_or_path =
|
12 |
proj_out_num = 256
|
13 |
|
14 |
# Load model and tokenizer
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
)
|
22 |
-
print("Model loaded successfully!")
|
23 |
-
except Exception as e:
|
24 |
-
print(f"Error loading model: {e}")
|
25 |
-
raise
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
-
print("Tokenizer loaded successfully!")
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error loading tokenizer: {e}")
|
38 |
-
raise
|
39 |
|
40 |
# Chat history storage
|
41 |
chat_history = []
|
42 |
-
current_image = None
|
43 |
|
44 |
-
# Function to convert .npy to JPEG
|
45 |
-
def npy_to_jpeg(image_np):
|
46 |
-
# Handle multi-dimensional .npy files
|
47 |
-
if image_np.ndim == 4: # If batch dimension is present (e.g., (1, 256, 256, 3))
|
48 |
-
image_np = image_np.squeeze(0) # Remove batch dimension
|
49 |
-
elif image_np.ndim == 2: # Grayscale image (e.g., (256, 256))
|
50 |
-
image_np = np.expand_dims(image_np, axis=-1) # Add channel dimension
|
51 |
-
|
52 |
-
# Normalize and convert to uint8
|
53 |
-
image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min()) * 255
|
54 |
-
image_np = image_np.astype(np.uint8)
|
55 |
-
|
56 |
-
# Convert to PIL Image
|
57 |
-
if image_np.shape[-1] == 1: # Grayscale
|
58 |
-
image_np = image_np.squeeze()
|
59 |
-
image = Image.fromarray(image_np, mode='L')
|
60 |
-
else: # RGB
|
61 |
-
image = Image.fromarray(image_np, mode='RGB')
|
62 |
-
|
63 |
-
# Save to bytes
|
64 |
-
buf = io.BytesIO()
|
65 |
-
image.save(buf, format='JPEG')
|
66 |
-
buf.seek(0)
|
67 |
-
return buf
|
68 |
-
|
69 |
-
# Function to process image and generate response
|
70 |
def process_image(question):
|
71 |
global current_image
|
72 |
if current_image is None:
|
73 |
-
return "Please upload an image first."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
return f"Invalid image dimensions. Expected {proj_out_num} patches, got {image_np.shape[-1]}.", None
|
80 |
-
|
81 |
-
# Convert .npy to JPEG
|
82 |
-
jpeg_image = npy_to_jpeg(image_np)
|
83 |
-
|
84 |
-
# Prepare image tokens and input text
|
85 |
-
image_tokens = "<im_patch>" * proj_out_num
|
86 |
-
input_txt = image_tokens + question
|
87 |
-
input_id = tokenizer(input_txt, return_tensors="pt")['input_ids'].to(device=device, dtype=torch.long) # Ensure input_id is LongTensor
|
88 |
-
|
89 |
-
# Prepare image tensor
|
90 |
-
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
91 |
-
|
92 |
-
# Generate response
|
93 |
-
generation = model.generate(
|
94 |
-
inputs=image_pt,
|
95 |
-
input_ids=input_id,
|
96 |
-
max_new_tokens=256,
|
97 |
-
do_sample=True,
|
98 |
-
top_p=0.9,
|
99 |
-
temperature=1.0
|
100 |
-
)
|
101 |
-
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
102 |
-
return generated_texts[0], jpeg_image
|
103 |
-
except Exception as e:
|
104 |
-
return f"Error processing image: {str(e)}", None
|
105 |
|
106 |
# Function to update chat
|
107 |
def chat_interface(question):
|
108 |
global chat_history
|
109 |
-
response
|
110 |
-
if jpeg_image:
|
111 |
-
chat_history.append((None, (jpeg_image,))) # Display image in chat
|
112 |
chat_history.append((question, response))
|
113 |
return chat_history
|
114 |
|
@@ -118,37 +60,20 @@ def upload_image(image):
|
|
118 |
current_image = image.name
|
119 |
return "Image uploaded successfully!"
|
120 |
|
121 |
-
# Function to clear chat history
|
122 |
-
def clear_chat():
|
123 |
-
global chat_history, current_image
|
124 |
-
chat_history = []
|
125 |
-
current_image = None
|
126 |
-
return [], "Chat history cleared."
|
127 |
-
|
128 |
# Gradio UI
|
129 |
with gr.Blocks(theme=gr.themes.Soft()) as chat_ui:
|
130 |
gr.Markdown("# 🏥 Medical Image Analysis Chatbot")
|
131 |
-
|
132 |
-
# File upload section
|
133 |
-
with gr.Row():
|
134 |
-
upload_button = gr.UploadButton(label="📁 Upload .npy Image", file_types=[".npy"])
|
135 |
-
upload_status = gr.Textbox(label="Status", interactive=False)
|
136 |
-
|
137 |
-
# Chat interface
|
138 |
-
with gr.Row():
|
139 |
-
chat_list = gr.Chatbot(value=[], label="Chat History", elem_id="chat-history")
|
140 |
-
|
141 |
-
# Question input and buttons
|
142 |
with gr.Row():
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
upload_button.upload(upload_image, upload_button, upload_status)
|
149 |
submit_button.click(chat_interface, question_input, chat_list)
|
150 |
question_input.submit(chat_interface, question_input, chat_list)
|
151 |
-
clear_button.click(clear_chat, outputs=[chat_list, upload_status])
|
152 |
|
153 |
-
|
154 |
-
chat_ui.launch()
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
# Model setup
|
7 |
+
device = torch.device("cpu") # Use 'cuda' if GPU is available
|
8 |
+
dtype = torch.float32
|
9 |
+
model_name_or_path = "GoodBaiBai88/M3D-LaMed-Phi-3-4B"
|
10 |
proj_out_num = 256
|
11 |
|
12 |
# Load model and tokenizer
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
model_name_or_path,
|
15 |
+
torch_dtype=torch.float32,
|
16 |
+
device_map='cpu',
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
model_name_or_path,
|
22 |
+
model_max_length=512,
|
23 |
+
padding_side="right",
|
24 |
+
use_fast=False,
|
25 |
+
trust_remote_code=True
|
26 |
+
)
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Chat history storage
|
29 |
chat_history = []
|
30 |
+
current_image = None
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def process_image(question):
|
33 |
global current_image
|
34 |
if current_image is None:
|
35 |
+
return "Please upload an image first."
|
36 |
+
|
37 |
+
image_np = np.load(current_image) # Load the stored .npy image
|
38 |
+
image_tokens = "<im_patch>" * proj_out_num
|
39 |
+
input_txt = image_tokens + question
|
40 |
+
input_id = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device=device)
|
41 |
+
|
42 |
+
# Prepare image for model
|
43 |
+
image_pt = torch.from_numpy(image_np).unsqueeze(0).to(dtype=dtype, device=device)
|
44 |
|
45 |
+
# Generate response
|
46 |
+
generation = model.generate(input_id, max_new_tokens=256, do_sample=True, top_p=0.9, temperature=1.0)
|
47 |
+
generated_texts = tokenizer.batch_decode(generation, skip_special_tokens=True)
|
48 |
+
return generated_texts[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Function to update chat
|
51 |
def chat_interface(question):
|
52 |
global chat_history
|
53 |
+
response = process_image(question)
|
|
|
|
|
54 |
chat_history.append((question, response))
|
55 |
return chat_history
|
56 |
|
|
|
60 |
current_image = image.name
|
61 |
return "Image uploaded successfully!"
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Gradio UI
|
64 |
with gr.Blocks(theme=gr.themes.Soft()) as chat_ui:
|
65 |
gr.Markdown("# 🏥 Medical Image Analysis Chatbot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
with gr.Row():
|
67 |
+
with gr.Column(scale=1, min_width=200):
|
68 |
+
chat_list = gr.Chatbot(label="Chat History", elem_id="chat-history")
|
69 |
+
with gr.Column(scale=4):
|
70 |
+
uploaded_image = gr.File(label="Upload .npy Image", type="filepath")
|
71 |
+
upload_status = gr.Textbox(label="Status", interactive=False)
|
72 |
+
question_input = gr.Textbox(label="Ask a question", placeholder="Ask something about the image...")
|
73 |
+
submit_button = gr.Button("Send")
|
74 |
|
75 |
+
uploaded_image.upload(upload_image, uploaded_image, upload_status)
|
|
|
76 |
submit_button.click(chat_interface, question_input, chat_list)
|
77 |
question_input.submit(chat_interface, question_input, chat_list)
|
|
|
78 |
|
79 |
+
chat_ui.launch()
|
|