Spaces:
Runtime error
Runtime error
File size: 13,521 Bytes
d037cdf a4b89be d037cdf a4b89be d037cdf 6ed9bdb d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be 8c5ce8c a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be 8c5ce8c 033b913 d037cdf a4b89be d037cdf 8c5ce8c d037cdf a4b89be d037cdf 6ed9bdb d037cdf 6ed9bdb d037cdf 8c5ce8c d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf a4b89be d037cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import json
import os
import re
import openai
from langchain.prompts import PromptTemplate
from config import TIMEOUT_STREAM, HISTORY_DIR
from vector_db import upload_file
from callback import StreamingGradioCallbackHandler
from queue import SimpleQueue, Empty, Queue
from threading import Thread
from utils import add_source_numbers, add_details, web_citation, get_history_names
from chains.custom_chain import CustomConversationalRetrievalChain
from langchain.chains import LLMChain
from chains.azure_openai import CustomAzureOpenAI
from config import OPENAI_API_TYPE, OPENAI_API_VERSION, OPENAI_API_KEY, OPENAI_API_BASE, API_KEY, \
DEPLOYMENT_ID, MODEL_ID
from cosmos_db import upsert_item, read_item, delete_items, query_items
class OpenAIModel:
def __init__(
self,
llm_model_name,
condense_model_name,
prompt_template="",
temperature=0.0,
top_p=1.0,
n_choices=1,
stop=None,
presence_penalty=0,
frequency_penalty=0,
user=None
):
self.llm_model_name = llm_model_name
self.condense_model_name = condense_model_name
self.prompt_template = prompt_template
self.temperature = temperature
self.top_p = top_p
self.n_choices = n_choices
self.stop = stop
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.history = []
self.user_identifier = user
def set_user_identifier(self, new_user_identifier):
self.user_identifier = new_user_identifier
def format_prompt(self, qa_prompt_template, condense_prompt_template):
# Prompt template langchain
qa_prompt = PromptTemplate(template=qa_prompt_template, input_variables=["question", "chat_history", "context"])
condense_prompt = PromptTemplate(template=condense_prompt_template,
input_variables=["question", "chat_history"])
return qa_prompt, condense_prompt
def memory(self, inputs, outputs, last_k=3):
# last_k: top k last conversation
if len(self.history) >= last_k:
self.history.pop(0)
self.history.extend([(inputs, outputs)])
def reset_conversation(self):
self.history = []
return []
def delete_first_conversation(self):
if self.history:
self.history.pop(0)
def delete_last_conversation(self):
if len(self.history) > 0:
self.history.pop()
def save_history(self, chatbot, file_name):
message = upsert_item(self.user_identifier, file_name, self.history, chatbot)
return message
def load_history(self, file_name):
items = read_item(self.user_identifier, file_name)
return items['id'], items['chatbot']
def delete_history(self, file_name):
message = delete_items(self.user_identifier, file_name)
return message, get_history_names(False, self.user_identifier), []
def audio_response(self, audio):
media_file = open(audio, 'rb')
response = openai.Audio.transcribe(
api_key=API_KEY,
model=MODEL_ID,
file=media_file
)
return response["text"], None
def inference(self, inputs, chatbot, streaming=False, upload_files_btn=False, custom_websearch=False,
local_db=False,
**kwargs):
if upload_files_btn or local_db:
status_text = "Indexing files to vector database"
yield chatbot, status_text
vectorstore = upload_file(upload_files_btn)
qa_prompt, condense_prompt = self.format_prompt(**kwargs)
job_done = object() # signals the processing is done
q = SimpleQueue()
if streaming:
timeout = TIMEOUT_STREAM
streaming_callback = [StreamingGradioCallbackHandler(q)]
# Define llm model
llm = CustomAzureOpenAI(deployment_name=DEPLOYMENT_ID,
openai_api_type=OPENAI_API_TYPE,
openai_api_base=OPENAI_API_BASE,
openai_api_version=OPENAI_API_VERSION,
openai_api_key=OPENAI_API_KEY,
temperature=self.temperature,
model_kwargs={"top_p": self.top_p},
streaming=streaming, \
callbacks=streaming_callback,
request_timeout=timeout)
condense_llm = CustomAzureOpenAI(deployment_name=self.condense_model_name,
openai_api_type=OPENAI_API_TYPE,
openai_api_base=OPENAI_API_BASE,
openai_api_version=OPENAI_API_VERSION,
openai_api_key=OPENAI_API_KEY,
temperature=self.temperature)
status_text = "Request URL: " + OPENAI_API_BASE
yield chatbot, status_text
# Create a function to call - this will run in a thread
# Create a Queue object
response_queue = SimpleQueue()
def task():
# Conversation + RetrivalChain
qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.75}),
condense_question_llm=condense_llm, verbose=True,
condense_question_prompt=condense_prompt,
combine_docs_chain_kwargs={"prompt": qa_prompt},
return_source_documents=True)
# query with input and chat history
response = qa({"question": inputs, "chat_history": self.history})
response_queue.put(response)
q.put(job_done)
thread = Thread(target=task)
thread.start()
chatbot.append((inputs, ""))
content = ""
while True:
try:
next_token = q.get(block=True)
if next_token is job_done:
break
content += next_token
chatbot[-1] = (chatbot[-1][0], content)
yield chatbot, status_text
except Empty:
continue
# add citation info to response
response = response_queue.get()
relevant_docs = response["source_documents"]
if len(relevant_docs) == 0:
display_append = ""
else:
if upload_files_btn:
reference_results = [d.page_content for d in relevant_docs]
reference_sources = [d.metadata["source"] for d in relevant_docs]
display_append = add_details(reference_results, reference_sources)
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
else:
display_append = []
for idx, d in enumerate(relevant_docs):
link = d.metadata["source"]
title = d.page_content.split("\n")[0]
# Remove non word characters and blank space before title
title = re.sub(r"[^\w\s]", "", title[:4]).strip()
display_append.append(
f'<a href=\"{link}\" target=\"_blank\">[{idx + 1}] {title}</a>'
)
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
chatbot[-1] = (chatbot[-1][0], content + display_append)
yield chatbot, status_text
self.memory(inputs, content)
# self.auto_save_history(chatbot)
thread.join()
else:
import requests
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from chains.web_search import GoogleWebSearch
from config import GOOGLE_API_KEY, GOOGLE_CSE_ID
top_k = 4
if custom_websearch:
status_text = "Retrieving information from website FPTSoftware.com"
yield chatbot, status_text
params = {
"q": inputs,
"v": "\{539C9DC1-663A-418D-82A4-662D34EE34BC\}",
"p": 10,
"l": "en",
"s": "{EACE8DB5-668F-4357-9782-405070D28D11}",
"itemid": "\{91F4101E-B1F3-4905-A832-96F703D3FBB1\}",
}
req = requests.get(
"https://fptsoftware.com//sxa/search/results/?",
params=params
)
res = json.loads(req.text)
results = []
for r in res["Results"][:top_k]:
link = "https://fptsoftware.com" + r["Url"]
results.append({"link": link})
reference_results, display_append = web_citation(inputs, results, True)
reference_results = add_source_numbers(reference_results)
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
status_text = "Request URL: " + OPENAI_API_BASE
yield chatbot, status_text
chatbot.append((inputs, ""))
web_search = GoogleWebSearch()
ai_response = web_search.predict(context="\n\n".join(reference_results), question=inputs,
chat_history=self.history)
chatbot[-1] = (chatbot[-1][0], ai_response + display_append)
self.memory(inputs, ai_response)
# self.auto_save_history(chatbot)
yield chatbot, status_text
else:
from chains.decision_maker import DecisionMaker
from chains.simple_chain import SimpleChain
decision_maker = DecisionMaker()
simple_chain = SimpleChain()
decision = decision_maker.predict(question=inputs)
if "LLM Model" in decision:
status_text = "Request URL: " + OPENAI_API_BASE
yield chatbot, status_text
chatbot.append((inputs, ""))
ai_response = simple_chain.predict(question=inputs)
chatbot[-1] = (chatbot[-1][0], ai_response)
self.memory(inputs, ai_response)
# self.auto_save_history(chatbot)
yield chatbot, status_text
else:
status_text = "Retrieving information from Google"
yield chatbot, status_text
search = GoogleSearchAPIWrapper(google_api_key=GOOGLE_API_KEY, google_cse_id=GOOGLE_CSE_ID)
results = search.results(inputs, num_results=top_k)
reference_results, display_append = web_citation(inputs, results, False)
reference_results = add_source_numbers(reference_results)
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
status_text = "Request URL: " + OPENAI_API_BASE
yield chatbot, status_text
chatbot.append((inputs, ""))
web_search = GoogleWebSearch()
ai_response = web_search.predict(context="\n\n".join(reference_results), question=inputs,
chat_history=self.history)
chatbot[-1] = (chatbot[-1][0], ai_response + display_append)
self.memory(inputs, ai_response)
# self.auto_save_history(chatbot)
yield chatbot, status_text
if __name__ == '__main__':
import os
from config import OPENAI_API_KEY
from langchain.chains.llm import LLMChain
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate)
SYSTEM_PROMPT_TEMPLATE = "You're a helpful assistant."
HUMAN_PROMPT_TEMPLATE = "Human: {question}\n AI answer:"
prompt = ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(SYSTEM_PROMPT_TEMPLATE),
HumanMessagePromptTemplate.from_template(HUMAN_PROMPT_TEMPLATE)
]
)
llm = CustomAzureOpenAI(deployment_name="binh-gpt",
openai_api_key=OPENAI_API_KEY,
openai_api_base=OPENAI_API_BASE,
openai_api_version=OPENAI_API_VERSION,
temperature=0,
model_kwargs={"top_p": 1.0}, )
llm_chain = LLMChain(
llm=llm,
prompt=prompt
)
results = llm_chain.predict(question="Hello")
print(results) |