minatosnow commited on
Commit
6ed9bdb
·
1 Parent(s): ffdbcb0

Fix response declaration

Browse files
Files changed (1) hide show
  1. chains/openai_model.py +7 -5
chains/openai_model.py CHANGED
@@ -6,7 +6,7 @@ from langchain.prompts import PromptTemplate
6
  from config import TIMEOUT_STREAM
7
  from vector_db import upload_file
8
  from callback import StreamingGradioCallbackHandler
9
- from queue import SimpleQueue, Empty
10
  from threading import Thread
11
  from utils import history_file_path, load_lasted_file_username, add_source_numbers, add_details
12
  from chains.custom_chain import CustomConversationalRetrievalChain
@@ -183,20 +183,21 @@ class OpenAIModel:
183
  yield chatbot, status_text
184
 
185
  # Create a funciton to call - this will run in a thread
186
- global response
187
  def task():
188
  # Converation + RetrivalChain
189
  qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(k=5),
190
- condense_question_llm = condense_llm, verbose=True,
191
  condense_question_prompt=condense_prompt,
192
  combine_docs_chain_kwargs={"prompt": qa_prompt},
193
  return_source_documents=True)
194
  # query with input and chat history
195
  response = qa({"question": inputs, "chat_history": self.history})
 
196
  q.put(job_done)
197
 
198
  thread = Thread(target=task)
199
- thread.start()
200
  chatbot.append((inputs, ""))
201
  content = ""
202
  while True:
@@ -209,8 +210,9 @@ class OpenAIModel:
209
  yield chatbot, status_text
210
  except Empty:
211
  continue
212
-
213
  # add citation info to response
 
214
  relevant_docs = response["source_documents"]
215
  reference_results = [d.page_content for d in relevant_docs]
216
  display_append = add_details(reference_results)
 
6
  from config import TIMEOUT_STREAM
7
  from vector_db import upload_file
8
  from callback import StreamingGradioCallbackHandler
9
+ from queue import SimpleQueue, Empty, Queue
10
  from threading import Thread
11
  from utils import history_file_path, load_lasted_file_username, add_source_numbers, add_details
12
  from chains.custom_chain import CustomConversationalRetrievalChain
 
183
  yield chatbot, status_text
184
 
185
  # Create a funciton to call - this will run in a thread
186
+ response_queue = Queue()
187
  def task():
188
  # Converation + RetrivalChain
189
  qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(k=5),
190
+ condense_question_llm = condense_llm, verbose=True,
191
  condense_question_prompt=condense_prompt,
192
  combine_docs_chain_kwargs={"prompt": qa_prompt},
193
  return_source_documents=True)
194
  # query with input and chat history
195
  response = qa({"question": inputs, "chat_history": self.history})
196
+ response_queue.put(response)
197
  q.put(job_done)
198
 
199
  thread = Thread(target=task)
200
+ thread.start()
201
  chatbot.append((inputs, ""))
202
  content = ""
203
  while True:
 
210
  yield chatbot, status_text
211
  except Empty:
212
  continue
213
+
214
  # add citation info to response
215
+ response = response_queue.get()
216
  relevant_docs = response["source_documents"]
217
  reference_results = [d.page_content for d in relevant_docs]
218
  display_append = add_details(reference_results)