Spaces:
Runtime error
Runtime error
abcd
Browse files
chains/__pycache__/multi_queries.cpython-39.pyc
ADDED
Binary file (1.43 kB). View file
|
|
chains/__pycache__/openai_model.cpython-39.pyc
CHANGED
Binary files a/chains/__pycache__/openai_model.cpython-39.pyc and b/chains/__pycache__/openai_model.cpython-39.pyc differ
|
|
chains/multi_queries.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains.llm import LLMChain
|
2 |
+
from langchain.prompts.chat import (
|
3 |
+
ChatPromptTemplate,
|
4 |
+
SystemMessagePromptTemplate,
|
5 |
+
HumanMessagePromptTemplate)
|
6 |
+
from prompts.multi_queries import system_template, human_template
|
7 |
+
from config import OPENAI_API_TYPE, OPENAI_API_VERSION, OPENAI_API_KEY, OPENAI_API_BASE, DEPLOYMENT_ID
|
8 |
+
from chains.azure_openai import CustomAzureOpenAI
|
9 |
+
|
10 |
+
class MultiQueries(LLMChain):
|
11 |
+
llm = CustomAzureOpenAI(deployment_name=DEPLOYMENT_ID,
|
12 |
+
openai_api_type=OPENAI_API_TYPE,
|
13 |
+
openai_api_base=OPENAI_API_BASE,
|
14 |
+
openai_api_version=OPENAI_API_VERSION,
|
15 |
+
openai_api_key=OPENAI_API_KEY,
|
16 |
+
temperature=0.0)
|
17 |
+
prompt = ChatPromptTemplate.from_messages(
|
18 |
+
[
|
19 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
20 |
+
HumanMessagePromptTemplate.from_template(human_template)
|
21 |
+
])
|
22 |
+
if __name__ == "__main__":
|
23 |
+
queries_chain = MultiQueries()
|
24 |
+
out = queries_chain.predict(question="Where can I request for my event's permit in Penang?")
|
25 |
+
print(out.strip().split('\n\n')[1])
|
26 |
+
print(list(map(lambda x: x.split(': ')[-1], out.split('\n\n'))))
|
chains/openai_model.py
CHANGED
@@ -104,7 +104,8 @@ class OpenAIModel:
|
|
104 |
from chains.web_search import GoogleWebSearch
|
105 |
from config import GOOGLE_API_KEY, GOOGLE_CSE_ID, CUSTOM_API_KEY, CUSTOM_CSE_ID
|
106 |
from chains.summary import WebSummary
|
107 |
-
|
|
|
108 |
status_text = "Retrieving information from the web"
|
109 |
yield chatbot, status_text
|
110 |
if use_websearch:
|
@@ -114,23 +115,37 @@ class OpenAIModel:
|
|
114 |
google_api_key = CUSTOM_API_KEY
|
115 |
google_cse_id = CUSTOM_CSE_ID
|
116 |
search = GoogleSearchAPIWrapper(google_api_key=google_api_key, google_cse_id=google_cse_id)
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
reference_results = []
|
119 |
display_append = []
|
120 |
for idx, result in enumerate(results):
|
121 |
-
print(result['link'])
|
122 |
-
response = requests.get(result['link'])
|
123 |
-
soup = BeautifulSoup(response.content, "html.parser")
|
124 |
try:
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
except:
|
128 |
-
|
129 |
-
|
130 |
-
reference_results.append([summary, result['link']])
|
131 |
-
display_append.append(
|
132 |
-
f"<a href=\"{result['link']}\" target=\"_blank\">{idx+1}. {result['title']}</a>"
|
133 |
-
)
|
134 |
reference_results = add_source_numbers(reference_results)
|
135 |
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
|
136 |
|
@@ -181,8 +196,10 @@ class OpenAIModel:
|
|
181 |
|
182 |
status_text = "Request URL: " + OPENAI_API_BASE
|
183 |
yield chatbot, status_text
|
184 |
-
|
185 |
# Create a funciton to call - this will run in a thread
|
|
|
|
|
|
|
186 |
def task():
|
187 |
# Converation + RetrivalChain
|
188 |
qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(k=5),
|
@@ -191,10 +208,12 @@ class OpenAIModel:
|
|
191 |
combine_docs_chain_kwargs={"prompt": qa_prompt},
|
192 |
return_source_documents=True)
|
193 |
# query with input and chat history
|
194 |
-
global response
|
195 |
response = qa({"question": inputs, "chat_history": self.history})
|
|
|
|
|
196 |
q.put(job_done)
|
197 |
-
|
|
|
198 |
thread = Thread(target=task)
|
199 |
thread.start()
|
200 |
chatbot.append((inputs, ""))
|
@@ -211,6 +230,8 @@ class OpenAIModel:
|
|
211 |
continue
|
212 |
|
213 |
# add citation info to response
|
|
|
|
|
214 |
relevant_docs = response["source_documents"]
|
215 |
reference_results = [d.page_content for d in relevant_docs]
|
216 |
display_append = add_details(reference_results)
|
|
|
104 |
from chains.web_search import GoogleWebSearch
|
105 |
from config import GOOGLE_API_KEY, GOOGLE_CSE_ID, CUSTOM_API_KEY, CUSTOM_CSE_ID
|
106 |
from chains.summary import WebSummary
|
107 |
+
from chains.multi_queries import MultiQueries
|
108 |
+
|
109 |
status_text = "Retrieving information from the web"
|
110 |
yield chatbot, status_text
|
111 |
if use_websearch:
|
|
|
115 |
google_api_key = CUSTOM_API_KEY
|
116 |
google_cse_id = CUSTOM_CSE_ID
|
117 |
search = GoogleSearchAPIWrapper(google_api_key=google_api_key, google_cse_id=google_cse_id)
|
118 |
+
|
119 |
+
queries_chain = MultiQueries()
|
120 |
+
out = queries_chain.predict(question=inputs)
|
121 |
+
queries = list(map(lambda x: x.split(': ')[-1], out.split('\n\n')))
|
122 |
+
print(queries)
|
123 |
+
results = []
|
124 |
+
for query in queries:
|
125 |
+
search_rs = search.results(query, 2)
|
126 |
+
results.extend(search_rs)
|
127 |
reference_results = []
|
128 |
display_append = []
|
129 |
for idx, result in enumerate(results):
|
|
|
|
|
|
|
130 |
try:
|
131 |
+
head = requests.head(result['link'])
|
132 |
+
if "text/html" in head.headers['Content-Type']:
|
133 |
+
html_response = requests.get(result['link'])
|
134 |
+
soup = BeautifulSoup(html_response.content, "html.parser")
|
135 |
+
try:
|
136 |
+
web_summary = WebSummary()
|
137 |
+
summary = web_summary.predict(question=inputs, doc=soup.get_text())
|
138 |
+
print("Can access", result['link'])
|
139 |
+
except:
|
140 |
+
print("Cannot access ", result['link'])
|
141 |
+
summary = result['snippet']
|
142 |
+
reference_results.append([summary, result['link']])
|
143 |
+
display_append.append(
|
144 |
+
f"<a href=\"{result['link']}\" target=\"_blank\">{idx+1}. {result['title']}</a>"
|
145 |
+
)
|
146 |
except:
|
147 |
+
continue
|
148 |
+
|
|
|
|
|
|
|
|
|
149 |
reference_results = add_source_numbers(reference_results)
|
150 |
display_append = '<div class = "source-a">' + "\n".join(display_append) + '</div>'
|
151 |
|
|
|
196 |
|
197 |
status_text = "Request URL: " + OPENAI_API_BASE
|
198 |
yield chatbot, status_text
|
|
|
199 |
# Create a funciton to call - this will run in a thread
|
200 |
+
|
201 |
+
# Create a Queue object
|
202 |
+
response_queue = SimpleQueue()
|
203 |
def task():
|
204 |
# Converation + RetrivalChain
|
205 |
qa = CustomConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(k=5),
|
|
|
208 |
combine_docs_chain_kwargs={"prompt": qa_prompt},
|
209 |
return_source_documents=True)
|
210 |
# query with input and chat history
|
|
|
211 |
response = qa({"question": inputs, "chat_history": self.history})
|
212 |
+
# Put response in the queue
|
213 |
+
response_queue.put(response)
|
214 |
q.put(job_done)
|
215 |
+
|
216 |
+
|
217 |
thread = Thread(target=task)
|
218 |
thread.start()
|
219 |
chatbot.append((inputs, ""))
|
|
|
230 |
continue
|
231 |
|
232 |
# add citation info to response
|
233 |
+
# Get the response from the queue
|
234 |
+
response = response_queue.get()
|
235 |
relevant_docs = response["source_documents"]
|
236 |
reference_results = [d.page_content for d in relevant_docs]
|
237 |
display_append = add_details(reference_results)
|
prompts/__pycache__/multi_queries.cpython-39.pyc
ADDED
Binary file (336 Bytes). View file
|
|
prompts/multi_queries.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
system_template = "You are an AI helpful assistant"
|
2 |
+
|
3 |
+
human_template = """Translate the following original question into English and Malaysian.
|
4 |
+
original question:{question}"""
|
test.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pinecone
|
2 |
+
import os
|
3 |
+
import PyPDF2
|
4 |
+
import shutil
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from tqdm import tqdm
|
8 |
+
from pydantic import Field
|
9 |
+
from typing import List, Optional
|
10 |
+
from langchain.load.serializable import Serializable
|
11 |
+
|
12 |
+
from langchain.vectorstores import Pinecone
|
13 |
+
from config import PINECONE_API_KEY, PINECONE_ENVIRONMENT, INDEX_NAME, SAVE_DIR
|
14 |
+
from config import OPENAI_API_BASE, OPENAI_API_KEY, OPENAI_API_TYPE, OPENAI_API_VERSION, EMBEDDING_DEPLOYMENT_ID
|
15 |
+
from langchain.embeddings import OpenAIEmbeddings
|
16 |
+
from langchain.text_splitter import TokenTextSplitter
|
17 |
+
|
18 |
+
class Document(Serializable):
|
19 |
+
"""Class for storing a piece of text and associated metadata."""
|
20 |
+
|
21 |
+
page_content: str
|
22 |
+
"""String text."""
|
23 |
+
metadata: dict = Field(default_factory=dict)
|
24 |
+
"""Arbitrary metadata about the page content (e.g., source, relationships to other
|
25 |
+
documents, etc.).
|
26 |
+
"""
|
27 |
+
|
28 |
+
filepath = "documents\STANDARD_SOFTWARE LIFECYCLES.pdf"
|
29 |
+
pdftext = ""
|
30 |
+
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30)
|
31 |
+
doc_chunks = []
|
32 |
+
documents = []
|
33 |
+
with open(filepath, "rb") as pdfFileObj:
|
34 |
+
pdf_reader = PyPDF2.PdfReader(pdfFileObj)
|
35 |
+
for page in tqdm(pdf_reader.pages):
|
36 |
+
pdftext += page.extract_text()
|
37 |
+
texts = [Document(page_content=pdftext, metadata={"source": filepath})]
|
38 |
+
texts = text_splitter.split_documents(texts)
|
39 |
+
documents.extend(texts)
|
40 |
+
print(documents[:3])
|
41 |
+
# for (idx, docs) in enumerate(documents):
|
42 |
+
# docs.page_content = f"[{idx}] " + docs.page_content
|
43 |
+
def add_source_numbers(lst, source_name = "Source", use_source = True):
|
44 |
+
if use_source:
|
45 |
+
return [f'[{idx+1}]\t "{item[0]}"\n{source_name}: {item[1]}' for idx, item in enumerate(lst)]
|
46 |
+
else:
|
47 |
+
return [f'[{idx+1}]\t "{item}"' for idx, item in enumerate(lst)]
|
48 |
+
|
49 |
+
for (idx, d) in enumerate(documents):
|
50 |
+
item = [d.page_content.strip("�"), os.path.basename(d.metadata["source"])]
|
51 |
+
d.page_content = f'[{idx+1}]\t "{item[0]}"\nSource: {item[1]}'
|
52 |
+
# print(reference_results)
|
53 |
+
# print("----------------")
|
54 |
+
# print(documents[:3])
|
55 |
+
|
56 |
+
def add_details(lst):
|
57 |
+
nodes = []
|
58 |
+
for txt in lst:
|
59 |
+
brief = txt[:25].replace("\n", "")
|
60 |
+
nodes.append(
|
61 |
+
f"<details><summary>{brief}...</summary><p>{txt}</p></details>"
|
62 |
+
)
|
63 |
+
return nodes
|
64 |
+
reference_results = [d.page_content for d in documents[:3]]
|
65 |
+
display_append = add_details(reference_results)
|
66 |
+
print(display_append)
|