Priyanka6's picture
Update space
6114841
# # import gradio as gr
# # from huggingface_hub import InferenceClient
# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # ):
# # messages = [{"role": "system", "content": system_message}]
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # messages.append({"role": "user", "content": message})
# # response = ""
# # for message in client.chat_completion(
# # messages,
# # max_tokens=max_tokens,
# # stream=True,
# # temperature=temperature,
# # top_p=top_p,
# # ):
# # token = message.choices[0].delta.content
# # response += token
# # yield response
# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# # respond,
# # additional_inputs=[
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# # gr.Slider(
# # minimum=0.1,
# # maximum=1.0,
# # value=0.95,
# # step=0.05,
# # label="Top-p (nucleus sampling)",
# # ),
# # ],
# # )
# # if __name__ == "__main__":
# # demo.launch()
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
from safetensors.torch import load_file, save_file
# Define model names
# MODEL_1_PATH = "./adapter_model.safetensors" # Local path inside Space
###
MODEL_1_PATH = "Priyanka6/fine-tuning-inference"
###
MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
# MODEL_3_NAME =
def trim_adapter_weights(model_path):
"""
Trims the last token from the adapter's lm_head.lora_B.default.weight
if there is a mismatch with the base model.
"""
model_path = "./adapter_model.safetensors"
# if not os.path.exists(model_path):
# raise FileNotFoundError(f"Adapter file not found: {model_path}")
checkpoint = load_file(model_path)
print("Keys in checkpoint:", list(checkpoint.keys()))
key_to_trim = "lm_head.lora_B.default.weight"
if key_to_trim in checkpoint:
print("Entered")
original_size = checkpoint[key_to_trim].shape[0]
expected_size = original_size - 1 # Removing last token
print(f"Trimming {key_to_trim}: {original_size} -> {expected_size}")
checkpoint[key_to_trim] = checkpoint[key_to_trim][:-1] # Trim the last row
# Save the modified adapter
trimmed_adapter_path = os.path.join(model_path, "adapter_model_trimmed.safetensors")
save_file(checkpoint, trimmed_adapter_path)
return trimmed_adapter_path
print("did execute the if block")
return model_path
model_path=os.path.join(MODEL_1_PATH,"adapter_model.safetensors")
trimmed_adapter_path = trim_adapter_weights(model_path)
# Load the tokenizer (same for both models)
TOKENIZER_NAME = "sarvamai/sarvam-1"
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
# Function to load a model
def load_model(model_choice):
if model_choice == "Hugging face dataset":
model = AutoModelForCausalLM.from_pretrained("./", torch_dtype=torch.float16, device_map="auto")
trimmed_adapter_path = os.path.join("Priyanka6/fine-tuning-inference", "adapter_model_trimmed.safetensors")
model.load_adapter(trimmed_adapter_path, "safe_tensors") # Load safetensors adapter
else:
model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
model.eval()
return model
# Load default model on startup
current_model = load_model("Hugging face dataset")
# Chatbot response function
def respond(message, history, model_choice, max_tokens, temperature, top_p):
global current_model
# Switch model if user selects a different one
if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
(model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
current_model = load_model(model_choice)
# Convert chat history to format
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize and generate response
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
output_tokens = current_model.generate(
**input_tokens,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
return response
# Define Gradio Chat Interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()
# # Test the chatbot
# if __name__ == "__main__":
# while True:
# query = input("User: ")
# if query.lower() in ["exit", "quit"]:
# break
# response = chat(query)
# print(f"Bot: {response}")