# # import gradio as gr # # from huggingface_hub import InferenceClient # # """ # # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # # """ # # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # # def respond( # # message, # # history: list[tuple[str, str]], # # system_message, # # max_tokens, # # temperature, # # top_p, # # ): # # messages = [{"role": "system", "content": system_message}] # # for val in history: # # if val[0]: # # messages.append({"role": "user", "content": val[0]}) # # if val[1]: # # messages.append({"role": "assistant", "content": val[1]}) # # messages.append({"role": "user", "content": message}) # # response = "" # # for message in client.chat_completion( # # messages, # # max_tokens=max_tokens, # # stream=True, # # temperature=temperature, # # top_p=top_p, # # ): # # token = message.choices[0].delta.content # # response += token # # yield response # # """ # # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # # """ # # demo = gr.ChatInterface( # # respond, # # additional_inputs=[ # # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # # gr.Slider( # # minimum=0.1, # # maximum=1.0, # # value=0.95, # # step=0.05, # # label="Top-p (nucleus sampling)", # # ), # # ], # # ) # # if __name__ == "__main__": # # demo.launch() import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os from safetensors.torch import load_file, save_file # Define model names # MODEL_1_PATH = "./adapter_model.safetensors" # Local path inside Space ### MODEL_1_PATH = "Priyanka6/fine-tuning-inference" ### MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub # MODEL_3_NAME = def trim_adapter_weights(model_path): """ Trims the last token from the adapter's lm_head.lora_B.default.weight if there is a mismatch with the base model. """ model_path = "./adapter_model.safetensors" # if not os.path.exists(model_path): # raise FileNotFoundError(f"Adapter file not found: {model_path}") checkpoint = load_file(model_path) print("Keys in checkpoint:", list(checkpoint.keys())) key_to_trim = "lm_head.lora_B.default.weight" if key_to_trim in checkpoint: print("Entered") original_size = checkpoint[key_to_trim].shape[0] expected_size = original_size - 1 # Removing last token print(f"Trimming {key_to_trim}: {original_size} -> {expected_size}") checkpoint[key_to_trim] = checkpoint[key_to_trim][:-1] # Trim the last row # Save the modified adapter trimmed_adapter_path = os.path.join(model_path, "adapter_model_trimmed.safetensors") save_file(checkpoint, trimmed_adapter_path) return trimmed_adapter_path print("did execute the if block") return model_path model_path=os.path.join(MODEL_1_PATH,"adapter_model.safetensors") trimmed_adapter_path = trim_adapter_weights(model_path) # Load the tokenizer (same for both models) TOKENIZER_NAME = "sarvamai/sarvam-1" tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME) # Function to load a model def load_model(model_choice): if model_choice == "Hugging face dataset": model = AutoModelForCausalLM.from_pretrained("./", torch_dtype=torch.float16, device_map="auto") trimmed_adapter_path = os.path.join("Priyanka6/fine-tuning-inference", "adapter_model_trimmed.safetensors") model.load_adapter(trimmed_adapter_path, "safe_tensors") # Load safetensors adapter else: model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME) model.eval() return model # Load default model on startup current_model = load_model("Hugging face dataset") # Chatbot response function def respond(message, history, model_choice, max_tokens, temperature, top_p): global current_model # Switch model if user selects a different one if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \ (model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME): current_model = load_model(model_choice) # Convert chat history to format messages = [{"role": "system", "content": "You are a friendly AI assistant."}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Tokenize and generate response inputs = tokenizer.apply_chat_template(messages, tokenize=False) input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") output_tokens = current_model.generate( **input_tokens, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) return response # Define Gradio Chat Interface demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"), gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch() # # Test the chatbot # if __name__ == "__main__": # while True: # query = input("User: ") # if query.lower() in ["exit", "quit"]: # break # response = chat(query) # print(f"Bot: {response}")