Spaces:
Runtime error
Runtime error
File size: 6,545 Bytes
6114841 76945ee b623416 ec6e229 6114841 76945ee 6114841 e89dcde 6114841 b623416 6114841 b623416 6114841 b623416 6114841 b623416 1edb934 b623416 6114841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# # import gradio as gr
# # from huggingface_hub import InferenceClient
# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # ):
# # messages = [{"role": "system", "content": system_message}]
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # messages.append({"role": "user", "content": message})
# # response = ""
# # for message in client.chat_completion(
# # messages,
# # max_tokens=max_tokens,
# # stream=True,
# # temperature=temperature,
# # top_p=top_p,
# # ):
# # token = message.choices[0].delta.content
# # response += token
# # yield response
# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# # respond,
# # additional_inputs=[
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# # gr.Slider(
# # minimum=0.1,
# # maximum=1.0,
# # value=0.95,
# # step=0.05,
# # label="Top-p (nucleus sampling)",
# # ),
# # ],
# # )
# # if __name__ == "__main__":
# # demo.launch()
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
from safetensors.torch import load_file, save_file
# Define model names
# MODEL_1_PATH = "./adapter_model.safetensors" # Local path inside Space
###
MODEL_1_PATH = "Priyanka6/fine-tuning-inference"
###
MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
# MODEL_3_NAME =
def trim_adapter_weights(model_path):
"""
Trims the last token from the adapter's lm_head.lora_B.default.weight
if there is a mismatch with the base model.
"""
model_path = "./adapter_model.safetensors"
# if not os.path.exists(model_path):
# raise FileNotFoundError(f"Adapter file not found: {model_path}")
checkpoint = load_file(model_path)
print("Keys in checkpoint:", list(checkpoint.keys()))
key_to_trim = "lm_head.lora_B.default.weight"
if key_to_trim in checkpoint:
print("Entered")
original_size = checkpoint[key_to_trim].shape[0]
expected_size = original_size - 1 # Removing last token
print(f"Trimming {key_to_trim}: {original_size} -> {expected_size}")
checkpoint[key_to_trim] = checkpoint[key_to_trim][:-1] # Trim the last row
# Save the modified adapter
trimmed_adapter_path = os.path.join(model_path, "adapter_model_trimmed.safetensors")
save_file(checkpoint, trimmed_adapter_path)
return trimmed_adapter_path
print("did execute the if block")
return model_path
model_path=os.path.join(MODEL_1_PATH,"adapter_model.safetensors")
trimmed_adapter_path = trim_adapter_weights(model_path)
# Load the tokenizer (same for both models)
TOKENIZER_NAME = "sarvamai/sarvam-1"
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
# Function to load a model
def load_model(model_choice):
if model_choice == "Hugging face dataset":
model = AutoModelForCausalLM.from_pretrained("./", torch_dtype=torch.float16, device_map="auto")
trimmed_adapter_path = os.path.join("Priyanka6/fine-tuning-inference", "adapter_model_trimmed.safetensors")
model.load_adapter(trimmed_adapter_path, "safe_tensors") # Load safetensors adapter
else:
model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
model.eval()
return model
# Load default model on startup
current_model = load_model("Hugging face dataset")
# Chatbot response function
def respond(message, history, model_choice, max_tokens, temperature, top_p):
global current_model
# Switch model if user selects a different one
if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
(model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
current_model = load_model(model_choice)
# Convert chat history to format
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize and generate response
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
output_tokens = current_model.generate(
**input_tokens,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
return response
# Define Gradio Chat Interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()
# # Test the chatbot
# if __name__ == "__main__":
# while True:
# query = input("User: ")
# if query.lower() in ["exit", "quit"]:
# break
# response = chat(query)
# print(f"Bot: {response}") |