Spaces:
Running
Running
"""Tokenization classes for vibevoice.""" | |
from typing import List, Optional, Union | |
from transformers.utils import logging | |
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer | |
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast | |
logger = logging.get_logger(__name__) | |
class VibeVoiceTextTokenizer(Qwen2Tokenizer): | |
""" | |
Construct a VibeVoice tokenizer. Based on the Qwen2 tokenizer with additional special tokens for speech. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
merges_file (`str`): | |
Path to the merges file. | |
errors (`str`, *optional*, defaults to `"replace"`): | |
Paradigm to follow when decoding bytes to UTF-8. | |
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The unknown token. | |
bos_token (`str`, *optional*): | |
The beginning of sequence token. Not used for vibevoice. | |
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The end of sequence token. | |
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The token used for padding. | |
add_special_tokens (`bool`, *optional*, defaults to `True`): | |
Whether or not to add special tokens when encoding. | |
""" | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
merges_file, | |
errors="replace", | |
unk_token="<|endoftext|>", | |
bos_token=None, | |
eos_token="<|endoftext|>", | |
pad_token="<|endoftext|>", | |
add_prefix_space=False, | |
add_special_tokens=True, | |
**kwargs, | |
): | |
super().__init__( | |
vocab_file=vocab_file, | |
merges_file=merges_file, | |
errors=errors, | |
unk_token=unk_token, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
pad_token=pad_token, | |
add_prefix_space=add_prefix_space, | |
add_special_tokens=add_special_tokens, | |
**kwargs, | |
) | |
# Add VibeVoice-specific special tokens | |
self._add_vibevoice_special_tokens() | |
def _add_vibevoice_special_tokens(self): | |
"""Add VibeVoice-specific special tokens.""" | |
special_tokens = { | |
"additional_special_tokens": [ | |
"<|vision_start|>", # Speech start (reusing vision tokens) | |
"<|vision_end|>", # Speech end | |
"<|vision_pad|>", # Speech diffusion pad | |
] | |
} | |
num_added = self.add_special_tokens(special_tokens) | |
# Cache special token IDs | |
self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>") | |
self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>") | |
self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>") | |
self._eos_id = self.convert_tokens_to_ids('<|endoftext|>') | |
return num_added | |
def eos_id(self) -> int: | |
"""Id of the end of sequence token.""" | |
return self._eos_id | |
def speech_start_id(self) -> int: | |
"""Id of the speech start token.""" | |
return self._speech_start_id | |
def speech_end_id(self) -> int: | |
"""Id of the speech end token.""" | |
return self._speech_end_id | |
def speech_diffusion_id(self) -> int: | |
"""Id of the speech diffusion token.""" | |
return self._speech_diffusion_id | |
def pad_id(self) -> int: | |
"""Id used for padding (returns -100 for loss masking).""" | |
return -100 | |
class VibeVoiceTextTokenizerFast(Qwen2TokenizerFast): | |
""" | |
Construct a "fast" VibeVoice tokenizer (backed by HuggingFace's *tokenizers* library). | |
Based on the Qwen2 tokenizer with additional special tokens for speech. | |
Args: | |
vocab_file (`str`, *optional*): | |
Path to the vocabulary file. | |
merges_file (`str`, *optional*): | |
Path to the merges file. | |
tokenizer_file (`str`, *optional*): | |
Path to [tokenizers](https://github.com/huggingface/tokenizers) file. | |
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The unknown token. | |
bos_token (`str`, *optional*): | |
The beginning of sequence token. Not used for vibevoice. | |
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The end of sequence token. | |
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The token used for padding. | |
""" | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file=None, | |
merges_file=None, | |
tokenizer_file=None, | |
unk_token="<|endoftext|>", | |
bos_token=None, | |
eos_token="<|endoftext|>", | |
pad_token="<|endoftext|>", | |
add_prefix_space=False, | |
**kwargs, | |
): | |
super().__init__( | |
vocab_file=vocab_file, | |
merges_file=merges_file, | |
tokenizer_file=tokenizer_file, | |
unk_token=unk_token, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
pad_token=pad_token, | |
add_prefix_space=add_prefix_space, | |
**kwargs, | |
) | |
# Add VibeVoice-specific special tokens | |
self._add_vibevoice_special_tokens() | |
def _add_vibevoice_special_tokens(self): | |
"""Add VibeVoice-specific special tokens.""" | |
special_tokens = { | |
"additional_special_tokens": [ | |
"<|vision_start|>", # Speech start (reusing vision tokens) | |
"<|vision_end|>", # Speech end | |
"<|vision_pad|>", # Speech diffusion pad | |
] | |
} | |
num_added = self.add_special_tokens(special_tokens) | |
# Cache special token IDs | |
self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>") | |
self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>") | |
self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>") | |
# self._eos_id = self.convert_tokens_to_ids('<|endoftext|>') | |
self._eos_id = self.eos_token_id # qwen2 / qwen3 | |
self._pad_id = self.convert_tokens_to_ids('<|image_pad|>') | |
return num_added | |
def eos_id(self) -> int: | |
"""Id of the end of sequence token.""" | |
return self._eos_id | |
def speech_start_id(self) -> int: | |
"""Id of the speech start token.""" | |
return self._speech_start_id | |
def speech_end_id(self) -> int: | |
"""Id of the speech end token.""" | |
return self._speech_end_id | |
def speech_diffusion_id(self) -> int: | |
"""Id of the speech diffusion token.""" | |
return self._speech_diffusion_id | |
def pad_id(self) -> int: | |
"""Id used for padding (returns -100 for loss masking).""" | |
return self._pad_id | |
__all__ = [ | |
"VibeVoiceTextTokenizer", | |
"VibeVoiceTextTokenizerFast", | |
] |