VibeVoice-Colab / modular /modular_vibevoice_text_tokenizer.py
NeuralFalcon's picture
Upload 34 files
909e36b verified
"""Tokenization classes for vibevoice."""
from typing import List, Optional, Union
from transformers.utils import logging
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast
logger = logging.get_logger(__name__)
class VibeVoiceTextTokenizer(Qwen2Tokenizer):
"""
Construct a VibeVoice tokenizer. Based on the Qwen2 tokenizer with additional special tokens for speech.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token.
bos_token (`str`, *optional*):
The beginning of sequence token. Not used for vibevoice.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The token used for padding.
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to add special tokens when encoding.
"""
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
unk_token="<|endoftext|>",
bos_token=None,
eos_token="<|endoftext|>",
pad_token="<|endoftext|>",
add_prefix_space=False,
add_special_tokens=True,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
add_special_tokens=add_special_tokens,
**kwargs,
)
# Add VibeVoice-specific special tokens
self._add_vibevoice_special_tokens()
def _add_vibevoice_special_tokens(self):
"""Add VibeVoice-specific special tokens."""
special_tokens = {
"additional_special_tokens": [
"<|vision_start|>", # Speech start (reusing vision tokens)
"<|vision_end|>", # Speech end
"<|vision_pad|>", # Speech diffusion pad
]
}
num_added = self.add_special_tokens(special_tokens)
# Cache special token IDs
self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
return num_added
@property
def eos_id(self) -> int:
"""Id of the end of sequence token."""
return self._eos_id
@property
def speech_start_id(self) -> int:
"""Id of the speech start token."""
return self._speech_start_id
@property
def speech_end_id(self) -> int:
"""Id of the speech end token."""
return self._speech_end_id
@property
def speech_diffusion_id(self) -> int:
"""Id of the speech diffusion token."""
return self._speech_diffusion_id
@property
def pad_id(self) -> int:
"""Id used for padding (returns -100 for loss masking)."""
return -100
class VibeVoiceTextTokenizerFast(Qwen2TokenizerFast):
"""
Construct a "fast" VibeVoice tokenizer (backed by HuggingFace's *tokenizers* library).
Based on the Qwen2 tokenizer with additional special tokens for speech.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token.
bos_token (`str`, *optional*):
The beginning of sequence token. Not used for vibevoice.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The token used for padding.
"""
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token=None,
eos_token="<|endoftext|>",
pad_token="<|endoftext|>",
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
# Add VibeVoice-specific special tokens
self._add_vibevoice_special_tokens()
def _add_vibevoice_special_tokens(self):
"""Add VibeVoice-specific special tokens."""
special_tokens = {
"additional_special_tokens": [
"<|vision_start|>", # Speech start (reusing vision tokens)
"<|vision_end|>", # Speech end
"<|vision_pad|>", # Speech diffusion pad
]
}
num_added = self.add_special_tokens(special_tokens)
# Cache special token IDs
self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
# self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
self._eos_id = self.eos_token_id # qwen2 / qwen3
self._pad_id = self.convert_tokens_to_ids('<|image_pad|>')
return num_added
@property
def eos_id(self) -> int:
"""Id of the end of sequence token."""
return self._eos_id
@property
def speech_start_id(self) -> int:
"""Id of the speech start token."""
return self._speech_start_id
@property
def speech_end_id(self) -> int:
"""Id of the speech end token."""
return self._speech_end_id
@property
def speech_diffusion_id(self) -> int:
"""Id of the speech diffusion token."""
return self._speech_diffusion_id
@property
def pad_id(self) -> int:
"""Id used for padding (returns -100 for loss masking)."""
return self._pad_id
__all__ = [
"VibeVoiceTextTokenizer",
"VibeVoiceTextTokenizerFast",
]