NeuralFalcon commited on
Commit
909e36b
·
verified ·
1 Parent(s): dec16d6

Upload 34 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ voices/en-Alice_woman.wav filter=lfs diff=lfs merge=lfs -text
37
+ voices/en-Carter_man.wav filter=lfs diff=lfs merge=lfs -text
38
+ voices/en-Frank_man.wav filter=lfs diff=lfs merge=lfs -text
39
+ voices/en-Mary_woman_bgm.wav filter=lfs diff=lfs merge=lfs -text
40
+ voices/en-Maya_woman.wav filter=lfs diff=lfs merge=lfs -text
41
+ voices/in-Samuel_man.wav filter=lfs diff=lfs merge=lfs -text
42
+ voices/zh-Anchen_man_bgm.wav filter=lfs diff=lfs merge=lfs -text
43
+ voices/zh-Bowen_man.wav filter=lfs diff=lfs merge=lfs -text
44
+ voices/zh-Xinran_woman.wav filter=lfs diff=lfs merge=lfs -text
configs/qwen2.5_1.5b_64k.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "acoustic_vae_dim": 64,
4
+ "acoustic_tokenizer_config": {
5
+ "causal": true,
6
+ "channels": 1,
7
+ "conv_bias": true,
8
+ "conv_norm": "none",
9
+ "corpus_normalize": 0.0,
10
+ "decoder_depths": null,
11
+ "decoder_n_filters": 32,
12
+ "decoder_ratios": [
13
+ 8,
14
+ 5,
15
+ 5,
16
+ 4,
17
+ 2,
18
+ 2
19
+ ],
20
+ "disable_last_norm": true,
21
+ "encoder_depths": "3-3-3-3-3-3-8",
22
+ "encoder_n_filters": 32,
23
+ "encoder_ratios": [
24
+ 8,
25
+ 5,
26
+ 5,
27
+ 4,
28
+ 2,
29
+ 2
30
+ ],
31
+ "fix_std": 0.5,
32
+ "layer_scale_init_value": 1e-06,
33
+ "layernorm": "RMSNorm",
34
+ "layernorm_elementwise_affine": true,
35
+ "layernorm_eps": 1e-05,
36
+ "mixer_layer": "depthwise_conv",
37
+ "model_type": "vibepod_acoustic_tokenizer",
38
+ "pad_mode": "constant",
39
+ "std_dist_type": "gaussian",
40
+ "vae_dim": 64,
41
+ "weight_init_value": 0.01
42
+ },
43
+ "decoder_config": {
44
+ "attention_dropout": 0.0,
45
+ "hidden_act": "silu",
46
+ "hidden_size": 1536,
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 8960,
49
+ "max_position_embeddings": 65536,
50
+ "max_window_layers": 28,
51
+ "model_type": "qwen2",
52
+ "num_attention_heads": 12,
53
+ "num_hidden_layers": 28,
54
+ "num_key_value_heads": 2,
55
+ "rms_norm_eps": 1e-06,
56
+ "rope_scaling": null,
57
+ "rope_theta": 1000000.0,
58
+ "sliding_window": null,
59
+ "tie_word_embeddings": true,
60
+ "torch_dtype": "bfloat16",
61
+ "use_cache": true,
62
+ "use_sliding_window": false,
63
+ "vocab_size": 151936
64
+ },
65
+ "diffusion_head_config": {
66
+ "ddpm_batch_mul": 4,
67
+ "ddpm_beta_schedule": "cosine",
68
+ "ddpm_num_inference_steps": 20,
69
+ "ddpm_num_steps": 1000,
70
+ "diffusion_type": "ddpm",
71
+ "head_ffn_ratio": 3.0,
72
+ "head_layers": 4,
73
+ "hidden_size": 1536,
74
+ "latent_size": 64,
75
+ "model_type": "vibepod_diffusion_head",
76
+ "prediction_type": "v_prediction",
77
+ "rms_norm_eps": 1e-05,
78
+ "speech_vae_dim": 64
79
+ },
80
+ "model_type": "vibepod",
81
+ "semantic_tokenizer_config": {
82
+ "causal": true,
83
+ "channels": 1,
84
+ "conv_bias": true,
85
+ "conv_norm": "none",
86
+ "corpus_normalize": 0.0,
87
+ "disable_last_norm": true,
88
+ "encoder_depths": "3-3-3-3-3-3-8",
89
+ "encoder_n_filters": 32,
90
+ "encoder_ratios": [
91
+ 8,
92
+ 5,
93
+ 5,
94
+ 4,
95
+ 2,
96
+ 2
97
+ ],
98
+ "fix_std": 0,
99
+ "layer_scale_init_value": 1e-06,
100
+ "layernorm": "RMSNorm",
101
+ "layernorm_elementwise_affine": true,
102
+ "layernorm_eps": 1e-05,
103
+ "mixer_layer": "depthwise_conv",
104
+ "model_type": "vibepod_semantic_tokenizer",
105
+ "pad_mode": "constant",
106
+ "std_dist_type": "none",
107
+ "vae_dim": 128,
108
+ "weight_init_value": 0.01
109
+ },
110
+ "semantic_vae_dim": 128,
111
+ "torch_dtype": "bfloat16"
112
+ }
configs/qwen2.5_7b_32k.json ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "acoustic_vae_dim": 64,
4
+ "acoustic_tokenizer_config": {
5
+ "causal": true,
6
+ "channels": 1,
7
+ "conv_bias": true,
8
+ "conv_norm": "none",
9
+ "corpus_normalize": 0.0,
10
+ "decoder_depths": null,
11
+ "decoder_n_filters": 32,
12
+ "decoder_ratios": [
13
+ 8,
14
+ 5,
15
+ 5,
16
+ 4,
17
+ 2,
18
+ 2
19
+ ],
20
+ "disable_last_norm": true,
21
+ "encoder_depths": "3-3-3-3-3-3-8",
22
+ "encoder_n_filters": 32,
23
+ "encoder_ratios": [
24
+ 8,
25
+ 5,
26
+ 5,
27
+ 4,
28
+ 2,
29
+ 2
30
+ ],
31
+ "fix_std": 0.5,
32
+ "layer_scale_init_value": 1e-06,
33
+ "layernorm": "RMSNorm",
34
+ "layernorm_elementwise_affine": true,
35
+ "layernorm_eps": 1e-05,
36
+ "mixer_layer": "depthwise_conv",
37
+ "model_type": "vibepod_acoustic_tokenizer",
38
+ "pad_mode": "constant",
39
+ "std_dist_type": "gaussian",
40
+ "vae_dim": 64,
41
+ "weight_init_value": 0.01
42
+ },
43
+ "decoder_config": {
44
+ "attention_dropout": 0.0,
45
+ "hidden_act": "silu",
46
+ "hidden_size": 3584,
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 18944,
49
+ "max_position_embeddings": 32768,
50
+ "max_window_layers": 28,
51
+ "model_type": "qwen2",
52
+ "num_attention_heads": 28,
53
+ "num_hidden_layers": 28,
54
+ "num_key_value_heads": 4,
55
+ "rms_norm_eps": 1e-06,
56
+ "rope_theta": 1000000.0,
57
+ "sliding_window": null,
58
+ "tie_word_embeddings": false,
59
+ "torch_dtype": "bfloat16",
60
+ "transformers_version": "4.40.1",
61
+ "use_cache": true,
62
+ "use_mrope": false,
63
+ "use_sliding_window": false,
64
+ "vocab_size": 152064
65
+ },
66
+ "diffusion_head_config": {
67
+ "ddpm_batch_mul": 4,
68
+ "ddpm_beta_schedule": "cosine",
69
+ "ddpm_num_inference_steps": 20,
70
+ "ddpm_num_steps": 1000,
71
+ "diffusion_type": "ddpm",
72
+ "head_ffn_ratio": 3.0,
73
+ "head_layers": 4,
74
+ "hidden_size": 3584,
75
+ "latent_size": 64,
76
+ "model_type": "vibepod_diffusion_head",
77
+ "prediction_type": "v_prediction",
78
+ "rms_norm_eps": 1e-05,
79
+ "speech_vae_dim": 64
80
+ },
81
+ "model_type": "vibepod",
82
+ "semantic_tokenizer_config": {
83
+ "causal": true,
84
+ "channels": 1,
85
+ "conv_bias": true,
86
+ "conv_norm": "none",
87
+ "corpus_normalize": 0.0,
88
+ "disable_last_norm": true,
89
+ "encoder_depths": "3-3-3-3-3-3-8",
90
+ "encoder_n_filters": 32,
91
+ "encoder_ratios": [
92
+ 8,
93
+ 5,
94
+ 5,
95
+ 4,
96
+ 2,
97
+ 2
98
+ ],
99
+ "fix_std": 0,
100
+ "layer_scale_init_value": 1e-06,
101
+ "layernorm": "RMSNorm",
102
+ "layernorm_elementwise_affine": true,
103
+ "layernorm_eps": 1e-05,
104
+ "mixer_layer": "depthwise_conv",
105
+ "model_type": "vibepod_semantic_tokenizer",
106
+ "pad_mode": "constant",
107
+ "std_dist_type": "none",
108
+ "vae_dim": 128,
109
+ "weight_init_value": 0.01
110
+ },
111
+ "semantic_vae_dim": 128,
112
+ "torch_dtype": "bfloat16"
113
+ }
modular/__init__.py ADDED
File without changes
modular/configuration_vibevoice.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ VibeVoice_AcousticTokenizer model configuration"""
2
+
3
+ from typing import Dict, List, Optional, Tuple
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+ from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
9
+
10
+ logger = logging.get_logger(__name__)
11
+
12
+
13
+ class VibeVoiceAcousticTokenizerConfig(PretrainedConfig):
14
+ model_type = "vibevoice_acoustic_tokenizer"
15
+
16
+ def __init__(
17
+ self,
18
+ channels: int = 1,
19
+ corpus_normalize: float = 0.0,
20
+ causal: bool = True,
21
+ vae_dim: int = 64,
22
+ fix_std: float = 0.5,
23
+ std_dist_type: str = 'gaussian',
24
+ # common
25
+ mixer_layer: str = 'depthwise_conv',
26
+ conv_norm: str = 'none',
27
+ pad_mode: str = 'constant',
28
+ disable_last_norm: bool = True,
29
+ layernorm: str = 'RMSNorm',
30
+ layernorm_eps: float = 1e-5,
31
+ layernorm_elementwise_affine: bool = True,
32
+ conv_bias: bool = True,
33
+ layer_scale_init_value: float = 1e-6,
34
+ weight_init_value: float = 1e-2,
35
+ # encoder specific
36
+ encoder_n_filters: int = 32,
37
+ encoder_ratios: Optional[List[int]] = [8,5,5,4,2,2],
38
+ encoder_depths: str = "3-3-3-3-3-3-8",
39
+ # decoder specific
40
+ decoder_n_filters: int = 32,
41
+ decoder_ratios: Optional[List[int]] = None, # if None, same as encoder
42
+ decoder_depths: Optional[str] = None,
43
+ **kwargs
44
+ ):
45
+ super().__init__(**kwargs)
46
+ self.channels = channels
47
+ self.corpus_normalize = corpus_normalize
48
+ self.causal = causal
49
+ self.vae_dim = vae_dim
50
+ self.fix_std = fix_std
51
+ self.std_dist_type = std_dist_type
52
+
53
+ # common parameters
54
+ self.conv_norm = conv_norm
55
+ self.pad_mode = pad_mode
56
+ self.layernorm_eps = layernorm_eps
57
+ self.disable_last_norm = disable_last_norm
58
+ self.layernorm = layernorm
59
+ self.layernorm_elementwise_affine = layernorm_elementwise_affine
60
+ self.conv_bias = conv_bias
61
+ self.layer_scale_init_value = layer_scale_init_value
62
+ self.weight_init_value = weight_init_value
63
+ self.mixer_layer = mixer_layer
64
+
65
+ # encoder specific parameters
66
+ self.encoder_n_filters = encoder_n_filters
67
+ self.encoder_ratios = encoder_ratios
68
+ self.encoder_depths = encoder_depths
69
+
70
+ # decoder specific parameters
71
+ self.decoder_ratios = decoder_ratios if decoder_ratios is not None else encoder_ratios
72
+ self.decoder_n_filters = decoder_n_filters
73
+ self.decoder_depths = decoder_depths
74
+
75
+
76
+ class VibeVoiceSemanticTokenizerConfig(PretrainedConfig):
77
+ model_type = "vibevoice_semantic_tokenizer"
78
+
79
+ def __init__(
80
+ self,
81
+ channels: int = 1,
82
+ corpus_normalize: float = 0.0,
83
+ causal: bool = True,
84
+ vae_dim: int = 64,
85
+ fix_std: float = 0,
86
+ std_dist_type: str = 'none',
87
+ # common
88
+ mixer_layer: str = 'depthwise_conv',
89
+ conv_norm: str = 'none',
90
+ pad_mode: str = 'constant',
91
+ disable_last_norm: bool = True,
92
+ layernorm: str = 'RMSNorm',
93
+ layernorm_eps: float = 1e-5,
94
+ layernorm_elementwise_affine: bool = True,
95
+ conv_bias: bool = True,
96
+ layer_scale_init_value: float = 1e-6,
97
+ weight_init_value: float = 1e-2,
98
+ # encoder specific
99
+ encoder_n_filters: int = 32,
100
+ encoder_ratios: Optional[List[int]] = [8,5,5,4,2,2],
101
+ encoder_depths: str = "3-3-3-3-3-3-8",
102
+ **kwargs
103
+ ):
104
+ super().__init__(**kwargs)
105
+ self.channels = channels
106
+ self.corpus_normalize = corpus_normalize
107
+ self.causal = causal
108
+ self.vae_dim = vae_dim
109
+ self.fix_std = fix_std
110
+ self.std_dist_type = std_dist_type
111
+
112
+ # common parameters
113
+ self.conv_norm = conv_norm
114
+ self.pad_mode = pad_mode
115
+ self.layernorm_eps = layernorm_eps
116
+ self.disable_last_norm = disable_last_norm
117
+ self.layernorm = layernorm
118
+ self.layernorm_elementwise_affine = layernorm_elementwise_affine
119
+ self.conv_bias = conv_bias
120
+ self.layer_scale_init_value = layer_scale_init_value
121
+ self.weight_init_value = weight_init_value
122
+ self.mixer_layer = mixer_layer
123
+
124
+ # encoder specific parameters
125
+ self.encoder_n_filters = encoder_n_filters
126
+ self.encoder_ratios = encoder_ratios
127
+ self.encoder_depths = encoder_depths
128
+
129
+
130
+ class VibeVoiceDiffusionHeadConfig(PretrainedConfig):
131
+ model_type = "vibevoice_diffusion_head"
132
+
133
+ def __init__(
134
+ self,
135
+ hidden_size=768,
136
+ head_layers=4,
137
+ head_ffn_ratio=3.0,
138
+ rms_norm_eps=1e-5,
139
+ latent_size=64,
140
+ speech_vae_dim=None,
141
+ prediction_type="v_prediction",
142
+ diffusion_type="ddpm",
143
+ ddpm_num_steps=1000,
144
+ ddpm_num_inference_steps=20,
145
+ ddpm_beta_schedule="cosine",
146
+ ddpm_batch_mul=4,
147
+ **kwargs
148
+ ):
149
+ self.hidden_size = hidden_size
150
+ self.head_layers = head_layers
151
+ self.head_ffn_ratio = head_ffn_ratio
152
+ self.rms_norm_eps = rms_norm_eps
153
+ self.latent_size = latent_size
154
+ self.speech_vae_dim = speech_vae_dim
155
+ self.prediction_type = prediction_type
156
+ self.diffusion_type = diffusion_type
157
+ self.ddpm_num_steps = ddpm_num_steps
158
+ self.ddpm_num_inference_steps = ddpm_num_inference_steps
159
+ self.ddpm_beta_schedule = ddpm_beta_schedule
160
+ self.ddpm_batch_mul = ddpm_batch_mul
161
+
162
+ super().__init__(**kwargs)
163
+
164
+ class VibeVoiceConfig(PretrainedConfig):
165
+ model_type = "vibevoice"
166
+ is_composition = True
167
+ sub_configs = {
168
+ "acoustic_tokenizer_config": VibeVoiceAcousticTokenizerConfig,
169
+ "semantic_tokenizer_config": VibeVoiceSemanticTokenizerConfig,
170
+ "decoder_config": Qwen2Config,
171
+ "diffusion_head_config": VibeVoiceDiffusionHeadConfig,
172
+ }
173
+ # keys_to_ignore_at_inference = ["past_key_values"]
174
+ # Default tensor parallel plan for base model `Qwen2`
175
+ base_model_tp_plan = {
176
+ "layers.*.self_attn.q_proj": "colwise",
177
+ "layers.*.self_attn.k_proj": "colwise",
178
+ "layers.*.self_attn.v_proj": "colwise",
179
+ "layers.*.self_attn.o_proj": "rowwise",
180
+ "layers.*.mlp.gate_proj": "colwise",
181
+ "layers.*.mlp.up_proj": "colwise",
182
+ "layers.*.mlp.down_proj": "rowwise",
183
+ }
184
+
185
+ def __init__(
186
+ self,
187
+ acoustic_tokenizer_config=None,
188
+ semantic_tokenizer_config=None,
189
+ decoder_config=None,
190
+ diffusion_head_config=None,
191
+ **kwargs
192
+ ):
193
+
194
+ # kwargs["_attn_implementation"] = "flash_attention_2"
195
+ kwargs["_attn_implementation_autoset"] = False
196
+
197
+ if acoustic_tokenizer_config is None:
198
+ self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"]()
199
+ elif isinstance(acoustic_tokenizer_config, dict):
200
+ acoustic_tokenizer_config["model_type"] = "vibevoice_acoustic_tokenizer"
201
+ self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"](**acoustic_tokenizer_config)
202
+ elif isinstance(acoustic_tokenizer_config, VibeVoiceAcousticTokenizerConfig):
203
+ # If an instance of the config class is provided
204
+ self.acoustic_tokenizer_config = acoustic_tokenizer_config
205
+
206
+ if semantic_tokenizer_config is None:
207
+ self.semantic_tokenizer_config = self.sub_configs["semantic_tokenizer_config"]()
208
+ elif isinstance(semantic_tokenizer_config, dict):
209
+ semantic_tokenizer_config["model_type"] = "vibevoice_semantic_tokenizer"
210
+ self.semantic_tokenizer_config = self.sub_configs["semantic_tokenizer_config"](**semantic_tokenizer_config)
211
+ elif isinstance(semantic_tokenizer_config, VibeVoiceSemanticTokenizerConfig):
212
+ # If an instance of the config class is provided
213
+ self.semantic_tokenizer_config = semantic_tokenizer_config
214
+
215
+ if decoder_config is None:
216
+ self.decoder_config = self.sub_configs["decoder_config"]()
217
+ elif isinstance(decoder_config, dict):
218
+ # If a dictionary is provided, instantiate the config class with it
219
+ # self.decoder_config = self.sub_configs["decoder_config"](**decoder_config)
220
+ if decoder_config.get("model_type", '') == "qwen2":
221
+ self.decoder_config = Qwen2Config(**decoder_config)
222
+ else:
223
+ raise ValueError(f"Unsupported decoder model type: {decoder_config.get('model_type', '')}")
224
+ elif isinstance(decoder_config, (Qwen2Config,)):
225
+ # If an instance of the config class is provided
226
+ self.decoder_config = decoder_config
227
+
228
+ if diffusion_head_config is None:
229
+ self.diffusion_head_config = self.sub_configs["diffusion_head_config"]()
230
+ elif isinstance(diffusion_head_config, dict):
231
+ diffusion_head_config["model_type"] = "vibevoice_diffusion_head"
232
+ self.diffusion_head_config = self.sub_configs["diffusion_head_config"](**diffusion_head_config)
233
+ elif isinstance(diffusion_head_config, VibeVoiceDiffusionHeadConfig):
234
+ # If an instance of the config class is provided
235
+ self.diffusion_head_config = diffusion_head_config
236
+
237
+ # other parameters
238
+ self.acoustic_vae_dim = getattr(self.acoustic_tokenizer_config, 'vae_dim', 64)
239
+ self.semantic_vae_dim = getattr(self.semantic_tokenizer_config, 'vae_dim', 128)
240
+
241
+ super().__init__(**kwargs)
242
+
243
+ __all__ = [
244
+ "VibeVoiceAcousticTokenizerConfig",
245
+ "VibeVoiceSemanticTokenizerConfig",
246
+ "VibeVoiceDiffusionHeadConfig",
247
+ "VibeVoiceConfig"
248
+ ]
modular/modeling_vibevoice.py ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Tuple, Union, Callable
3
+ from tqdm import tqdm
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import torch.distributed as dist
8
+
9
+ from transformers.models.auto import AutoModel, AutoModelForCausalLM
10
+
11
+ from transformers.activations import ACT2FN
12
+ from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput
13
+ from transformers.models.llama.modeling_llama import LlamaRMSNorm
14
+ from transformers import modeling_utils
15
+ from transformers.modeling_utils import PreTrainedModel
16
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
+ from transformers.utils import logging
18
+
19
+
20
+ from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
21
+ from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
22
+ from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler
23
+
24
+ from .configuration_vibevoice import VibeVoiceConfig
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
30
+ modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
31
+
32
+ @dataclass
33
+ class VibeVoiceCausalLMOutputWithPast(ModelOutput):
34
+ loss: Optional[torch.FloatTensor] = None
35
+ diffusion_loss: Optional[torch.FloatTensor] = None
36
+ speech_token_num: Optional[int] = None
37
+ logits: torch.FloatTensor = None
38
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
39
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
40
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
41
+
42
+
43
+ @dataclass
44
+ class VibeVoiceGenerationOutput(ModelOutput):
45
+ """
46
+ Output type for VibeVoice generation.
47
+
48
+ Args:
49
+ sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
50
+ The generated sequences.
51
+ speech_outputs (`List[torch.FloatTensor]`, *optional*):
52
+ List of generated speech waveforms or latents for each speech segment.
53
+ """
54
+ sequences: torch.LongTensor = None
55
+ speech_outputs: Optional[List[torch.FloatTensor]] = None
56
+
57
+
58
+ class SpeechConnector(nn.Module):
59
+ def __init__(self, input_dim, output_dim):
60
+ super().__init__()
61
+ self.fc1 = nn.Linear(input_dim, output_dim)
62
+ self.norm = LlamaRMSNorm(output_dim, eps=1e-6)
63
+ self.fc2 = nn.Linear(output_dim, output_dim)
64
+
65
+ def forward(self, features, **kwargs):
66
+ x = self.fc1(features)
67
+ x = self.norm(x)
68
+ x = self.fc2(x)
69
+ return x
70
+
71
+
72
+ # @auto_docstring
73
+ class VibeVoicePreTrainedModel(PreTrainedModel):
74
+ config_class = VibeVoiceConfig
75
+ base_model_prefix = "model"
76
+ supports_gradient_checkpointing = True
77
+ _skip_keys_device_placement = "past_key_values"
78
+ _supports_cache_class = True
79
+ _supports_flash_attn_2 = True
80
+ _supports_sdpa = True
81
+ _supports_quantized_cache = True
82
+ _supports_static_cache = True
83
+ _supports_attention_backend = True
84
+
85
+ def _init_weights(self, module):
86
+ if isinstance(module, VibeVoiceDiffusionHead):
87
+ module.initialize_weights()
88
+ return
89
+
90
+ # Use the language model's initializer_range if available
91
+ if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'):
92
+ std = self.config.language_model_config.initializer_range
93
+ elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'):
94
+ std = self.config.decoder_config.initializer_range
95
+ else:
96
+ std = 0.02 # Default value
97
+
98
+ if isinstance(module, nn.Linear):
99
+ module.weight.data.normal_(mean=0.0, std=std)
100
+ if module.bias is not None:
101
+ module.bias.data.zero_()
102
+ elif isinstance(module, nn.LayerNorm):
103
+ module.weight.data.fill_(1.0)
104
+ module.bias.data.zero_()
105
+
106
+ # @auto_docstring
107
+ class VibeVoiceModel(VibeVoicePreTrainedModel):
108
+ def __init__(self, config):
109
+ super().__init__(config)
110
+
111
+ if hasattr(config, 'torch_dtype') and config.torch_dtype is not None:
112
+ if isinstance(config.torch_dtype, str):
113
+ dtype = getattr(torch, config.torch_dtype)
114
+ else:
115
+ dtype = config.torch_dtype
116
+ else:
117
+ dtype = torch.float32
118
+
119
+ # Initialize Qwen2 model for language modeling
120
+ lm_config = config.decoder_config
121
+ self.language_model = AutoModel.from_config(lm_config)
122
+
123
+ # Initialize speech components if needed
124
+ self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype)
125
+ self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype)
126
+
127
+ self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype)
128
+ self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype)
129
+
130
+ # Register scaling factors as buffers - use 1D tensors for FSDP compatibility
131
+ self.register_buffer('speech_scaling_factor', torch.tensor(float('nan')))
132
+ self.register_buffer('speech_bias_factor', torch.tensor(float('nan')))
133
+
134
+ # Initialize prediction head for speech generation
135
+ self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype)
136
+
137
+ # Initialize noise scheduler
138
+ self.noise_scheduler = DPMSolverMultistepScheduler(
139
+ num_train_timesteps=config.diffusion_head_config.ddpm_num_steps,
140
+ beta_schedule=config.diffusion_head_config.ddpm_beta_schedule,
141
+ prediction_type=config.diffusion_head_config.prediction_type
142
+ )
143
+
144
+ def get_input_embeddings(self):
145
+ if hasattr(self.language_model, 'embed_tokens'):
146
+ # If the language model has an embed_tokens attribute, return it
147
+ return self.language_model.embed_tokens
148
+
149
+ for name, attr in self.language_model.fullmap.items(): # parallel by nnscaler, the name is changed
150
+ if attr.orig_name == 'embed_tokens.weight':
151
+ return getattr(self.language_model, name)
152
+ assert False, 'should not arrive here'
153
+
154
+ def set_input_embeddings(self, value):
155
+ self.language_model.embed_tokens = value
156
+
157
+ def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
158
+ """Set the speech tokenizers used for encoding and decoding speech."""
159
+ self.acoustic_tokenizer = acoustic_tokenizer
160
+ self.semantic_tokenizer = semantic_tokenizer
161
+
162
+ # Reset the encoder to evaluation mode
163
+ if self.acoustic_tokenizer is not None:
164
+ self.acoustic_tokenizer.eval()
165
+
166
+ if self.semantic_tokenizer is not None:
167
+ self.semantic_tokenizer.eval()
168
+
169
+ def forward(
170
+ self,
171
+ input_ids: torch.LongTensor = None,
172
+ attention_mask: Optional[torch.Tensor] = None,
173
+ position_ids: Optional[torch.LongTensor] = None,
174
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
175
+ inputs_embeds: Optional[torch.FloatTensor] = None,
176
+ use_cache: Optional[bool] = None,
177
+ output_attentions: Optional[bool] = None,
178
+ output_hidden_states: Optional[bool] = None,
179
+ return_dict: Optional[bool] = None,
180
+ cache_position: Optional[torch.LongTensor] = None,
181
+ **kwargs,
182
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
183
+
184
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
185
+
186
+ # Forward through language model
187
+ outputs = self.language_model(
188
+ input_ids=input_ids,
189
+ attention_mask=attention_mask,
190
+ position_ids=position_ids,
191
+ past_key_values=past_key_values,
192
+ inputs_embeds=inputs_embeds,
193
+ use_cache=use_cache,
194
+ output_attentions=output_attentions,
195
+ output_hidden_states=output_hidden_states,
196
+ return_dict=return_dict,
197
+ cache_position=cache_position,
198
+ **kwargs,
199
+ )
200
+
201
+ if not return_dict:
202
+ return outputs
203
+
204
+ return BaseModelOutputWithPast(
205
+ last_hidden_state=outputs.last_hidden_state,
206
+ past_key_values=outputs.past_key_values,
207
+ hidden_states=outputs.hidden_states,
208
+ attentions=outputs.attentions,
209
+ )
210
+
211
+
212
+ class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel):
213
+ _tied_weights_keys = ["lm_head.weight"]
214
+ _tp_plan = {"lm_head": "colwise_rep"}
215
+
216
+ def __init__(self, config):
217
+ super().__init__(config)
218
+ self.model = VibeVoiceModel(config)
219
+ self.vocab_size = config.decoder_config.vocab_size
220
+ self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False)
221
+
222
+ self.post_init()
223
+
224
+ def get_input_embeddings(self):
225
+ return self.model.get_input_embeddings()
226
+
227
+ def set_input_embeddings(self, value):
228
+ self.model.set_input_embeddings(value)
229
+
230
+ def get_output_embeddings(self):
231
+ return self.lm_head
232
+
233
+ def set_decoder(self, decoder):
234
+ self.model.language_model = decoder
235
+
236
+ def get_decoder(self):
237
+ return self.model.language_model
238
+
239
+ def tie_weights(self):
240
+ """
241
+ Tie the weights between the input embeddings and the output embeddings.
242
+ """
243
+ if getattr(self.config.decoder_config, 'tie_word_embeddings', False):
244
+ # The standard PreTrainedModel method will handle the tying.
245
+ # It typically does a simple parameter object assignment, which is
246
+ # CORRECT to do BEFORE FSDP wraps the model.
247
+ output_embeddings = self.get_output_embeddings()
248
+ input_embeddings = self.get_input_embeddings()
249
+ if hasattr(input_embeddings, 'weight'):
250
+ output_embeddings.weight = input_embeddings.weight
251
+ else:
252
+ # maybe returned input_embeddings a tensor directly
253
+ output_embeddings.weight = input_embeddings
254
+
255
+ if getattr(output_embeddings, "bias", None) is not None:
256
+ output_embeddings.bias.data = nn.functional.pad(
257
+ output_embeddings.bias.data,
258
+ (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
259
+ "constant",
260
+ 0,
261
+ )
262
+ print("✅ Tied input and output embeddings using standard assignment.")
263
+ else:
264
+ print("ℹ️ tie_word_embeddings is False, not tying weights.")
265
+
266
+ # Also, ensure set_output_embeddings is safe, though your implementation looks okay.
267
+ # The key is to avoid calling it after accelerator.prepare().
268
+ def set_output_embeddings(self, new_embeddings):
269
+ # Your current implementation using data.copy_ is good practice,
270
+ # but the best way is to not call this after prepare().
271
+ self.lm_head = new_embeddings
272
+
273
+ def forward_speech_features(
274
+ self,
275
+ speech_tensors=None,
276
+ speech_masks=None,
277
+ speech_type="audio",
278
+ return_unmask=False
279
+ ):
280
+ if speech_tensors is None:
281
+ # Use config to get vae_dim instead of non-existent self.args
282
+ vae_dim = self.config.acoustic_tokenizer_config.vae_dim
283
+ audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight)
284
+ connect_features = self.model.acoustic_connector(audio_features)
285
+ return audio_features, connect_features
286
+ else:
287
+ with torch.no_grad():
288
+ if speech_type == "audio":
289
+ with torch.no_grad():
290
+ frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0]
291
+ audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0]
292
+
293
+ elif speech_type == "vae":
294
+ # Use config to get vae_dim instead of non-existent self.args
295
+ vae_dim = self.config.acoustic_tokenizer_config.vae_dim
296
+ speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim)
297
+
298
+ # gaussian sample from the speech_mode
299
+ batch_size = speech_mode.size(0)
300
+ value = self.model.acoustic_tokenizer.fix_std / 0.8
301
+ std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value
302
+ std = std.view(-1, *[1] * (speech_mode.dim() - 1))
303
+ audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode)
304
+ else:
305
+ raise NotImplementedError(f"Speech type {speech_type} not implemented")
306
+
307
+ if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor):
308
+ scaling_factor = 1. / audio_tokens[speech_masks].flatten().std()
309
+ bias_factor = -audio_tokens[speech_masks].flatten().mean()
310
+
311
+ # Only use distributed operations if the process group is initialized
312
+ if dist.is_available() and dist.is_initialized():
313
+ dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM)
314
+ dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM)
315
+ world_size = dist.get_world_size()
316
+ self.model.speech_scaling_factor.copy_(scaling_factor / world_size)
317
+ self.model.speech_bias_factor.copy_(bias_factor / world_size)
318
+ print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
319
+ else:
320
+ # Single process case
321
+ self.model.speech_scaling_factor.copy_(scaling_factor)
322
+ self.model.speech_bias_factor.copy_(bias_factor)
323
+ print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
324
+
325
+ audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor
326
+
327
+ connect_features = self.model.acoustic_connector(audio_features)
328
+ if return_unmask:
329
+ return audio_features, connect_features
330
+ return audio_features[speech_masks], connect_features[speech_masks]
331
+
332
+ def forward(
333
+ self,
334
+ input_ids: torch.LongTensor = None,
335
+ attention_mask: Optional[torch.Tensor] = None,
336
+ position_ids: Optional[torch.LongTensor] = None,
337
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
338
+ inputs_embeds: Optional[torch.FloatTensor] = None,
339
+ labels: Optional[torch.LongTensor] = None,
340
+ use_cache: Optional[bool] = False,
341
+ output_attentions: Optional[bool] = None,
342
+ output_hidden_states: Optional[bool] = None,
343
+ return_dict: Optional[bool] = None,
344
+ cache_position: Optional[torch.LongTensor] = None,
345
+ # New arguments for speech processing and loss calculation
346
+ speech_tensors: Optional[torch.FloatTensor] = None,
347
+ speech_masks: Optional[torch.BoolTensor] = None,
348
+ speeches_loss_input: Optional[torch.FloatTensor] = None,
349
+ speech_semantic_tensors: Optional[torch.FloatTensor] = None,
350
+ acoustic_input_mask: Optional[torch.BoolTensor] = None,
351
+ acoustic_loss_mask: Optional[torch.BoolTensor] = None,
352
+ ddpm_batch_mul: int = 1,
353
+ **kwargs: Optional[Dict[str, Union[torch.Tensor, str]]],
354
+ ) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
355
+
356
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
357
+
358
+ x = self.get_input_embeddings()(input_ids)
359
+
360
+ semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors)
361
+ if speeches_loss_input is not None:
362
+ # only part audio need diffuse
363
+ speech_all_features, speech_all_connect_features = self.forward_speech_features(
364
+ speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
365
+ speech_masks=speech_masks,
366
+ speech_type=kwargs.get("speech_type", "audio"),
367
+ return_unmask=True
368
+ )
369
+ if speech_tensors is not None:
370
+ if semantic_speech_all_connect_features is not None:
371
+ x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks]
372
+ else:
373
+ x[acoustic_input_mask] = speech_all_connect_features[speech_masks]
374
+ speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] # only part audio need diffuse
375
+ speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks]
376
+ else:
377
+ speech_features, speech_connect_features = self.forward_speech_features(
378
+ speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
379
+ speech_masks=speech_masks,
380
+ speech_type=kwargs.get("speech_type", "audio"),
381
+ )
382
+ if speech_tensors is not None:
383
+ x[acoustic_input_mask] = speech_connect_features
384
+
385
+ outputs = self.model(
386
+ input_ids=None,
387
+ attention_mask=attention_mask,
388
+ position_ids=position_ids,
389
+ past_key_values=past_key_values,
390
+ inputs_embeds=x,
391
+ use_cache=use_cache,
392
+ output_attentions=output_attentions,
393
+ output_hidden_states=False,
394
+ return_dict=return_dict,
395
+ cache_position=cache_position,
396
+ )
397
+
398
+ hidden_states = outputs.last_hidden_state
399
+ logits = self.lm_head(hidden_states)
400
+ # logits = logits.float()
401
+
402
+ loss = None
403
+ if labels is not None:
404
+ # The custom CE loss with masking is calculated in the training script.
405
+ # We leave the standard loss calculation here as None.
406
+ pass
407
+
408
+ # --- Diffusion Loss Calculation ---
409
+ diffusion_loss = None
410
+ # This block is executed only if we are in a context that involves speech.
411
+ if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0:
412
+ condition_features = hidden_states[acoustic_loss_mask]
413
+
414
+ speech_len, latent_size = speech_features.shape
415
+
416
+ noise = torch.randn(
417
+ (speech_len * ddpm_batch_mul, latent_size),
418
+ device=hidden_states.device,
419
+ dtype=hidden_states.dtype
420
+ )
421
+
422
+ timesteps = torch.multinomial(
423
+ torch.ones(self.config.diffusion_head_config.ddpm_num_steps),
424
+ speech_len * ddpm_batch_mul,
425
+ replacement=True,
426
+ ).to(hidden_states.device)
427
+
428
+ speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0)
429
+ condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0)
430
+
431
+ noisy_speech_features = self.model.noise_scheduler.add_noise(
432
+ speech_features_repeated, noise, timesteps
433
+ )
434
+
435
+ model_output = self.model.prediction_head(
436
+ noisy_speech_features,
437
+ timesteps.type_as(x),
438
+ condition_features_repeated
439
+ )
440
+
441
+ prediction_type = self.config.diffusion_head_config.prediction_type
442
+ if prediction_type == "epsilon":
443
+ target_for_loss = noise
444
+ elif prediction_type == "v_prediction":
445
+ target_for_loss = self.model.noise_scheduler.get_velocity(
446
+ speech_features_repeated, noise, timesteps
447
+ )
448
+ else:
449
+ raise NotImplementedError(f"Prediction type {prediction_type} not implemented")
450
+
451
+ diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum')
452
+ if latent_size > 0 and ddpm_batch_mul > 0:
453
+ diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul
454
+ else:
455
+ diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device)
456
+
457
+ else:
458
+ # Dummy loss for DDP to work when there are no speech samples in a batch,
459
+ # but we are in a speech context.
460
+ diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0
461
+ diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0
462
+ diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0
463
+ # --- End Diffusion Loss Calculation ---
464
+
465
+ if not return_dict:
466
+ output = (logits, speech_len) + outputs.to_tuple()[1:]
467
+ return (loss, diffusion_loss) + output
468
+
469
+ return VibeVoiceCausalLMOutputWithPast(
470
+ loss=loss,
471
+ diffusion_loss=diffusion_loss,
472
+ speech_token_num=speech_len if speech_tensors is not None else 0,
473
+ logits=logits,
474
+ past_key_values=outputs.past_key_values,
475
+ hidden_states=outputs.hidden_states,
476
+ attentions=outputs.attentions,
477
+ )
478
+
479
+ AutoModel.register(VibeVoiceConfig, VibeVoiceModel)
480
+ AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration)
481
+
482
+ __all__ = [
483
+ "VibeVoiceModel",
484
+ "VibeVoicePreTrainedModel",
485
+ "VibeVoiceForConditionalGeneration",
486
+ "VibeVoiceCausalLMOutputWithPast",
487
+ "VibeVoiceGenerationOutput",
488
+ ]
modular/modeling_vibevoice_inference.py ADDED
@@ -0,0 +1,715 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Dict, List, Optional, Tuple, Union, Callable
3
+ from tqdm import tqdm
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from transformers.models.auto import AutoModel, AutoModelForCausalLM
8
+
9
+ from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList
10
+ from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
11
+ from transformers import modeling_utils
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
14
+ from transformers.utils import logging
15
+
16
+
17
+ # from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
18
+ from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceTokenizerEncoderOutput
19
+ from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
20
+ from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler
21
+
22
+ from .configuration_vibevoice import VibeVoiceConfig
23
+
24
+ from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast
25
+
26
+ from .modeling_vibevoice import VibeVoiceModel, VibeVoicePreTrainedModel
27
+ from .streamer import AudioStreamer, AsyncAudioStreamer
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
32
+ modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
33
+
34
+ @dataclass
35
+ class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast):
36
+ logits: Optional[torch.FloatTensor] = None
37
+
38
+ @dataclass
39
+ class VibeVoiceGenerationOutput(ModelOutput):
40
+ """
41
+ Output type for VibeVoice generation.
42
+
43
+ Args:
44
+ sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
45
+ The generated sequences.
46
+ speech_outputs (`List[torch.FloatTensor]`, *optional*):
47
+ List of generated speech waveforms or latents for each speech segment.
48
+ """
49
+ sequences: torch.LongTensor = None
50
+ speech_outputs: Optional[List[torch.FloatTensor]] = None
51
+ reach_max_step_sample: Optional[torch.BoolTensor] = None
52
+
53
+ class VibeVoiceTokenConstraintProcessor(LogitsProcessor):
54
+ """Constrains token generation to only valid tokens during speech generation."""
55
+
56
+ def __init__(self, valid_token_ids: List[int], device: torch.device = None):
57
+ self.valid_token_ids = torch.tensor(valid_token_ids, dtype=torch.long, device=device)
58
+
59
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
60
+ # Create a mask for valid tokens
61
+ mask = torch.full_like(scores, float('-inf'))
62
+ mask[:, self.valid_token_ids] = 0
63
+
64
+ # Apply mask to scores
65
+ scores = scores + mask
66
+ return scores
67
+
68
+ class VibeVoiceForConditionalGenerationInference(VibeVoicePreTrainedModel, GenerationMixin):
69
+ _tied_weights_keys = ["lm_head.weight"]
70
+ _tp_plan = {"lm_head": "colwise_rep"}
71
+
72
+ def __init__(self, config):
73
+ super().__init__(config)
74
+
75
+ # Initialize the base model
76
+ self.model = VibeVoiceModel(config)
77
+
78
+ # LM head for text generation
79
+ self.lm_head = nn.Linear(config.decoder_config.hidden_size, config.decoder_config.vocab_size, bias=False)
80
+
81
+ # inference configuration
82
+ self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps
83
+
84
+ # Initialize weights and apply final processing
85
+ self.post_init()
86
+
87
+ @property
88
+ def noise_scheduler(self):
89
+ return self.model.noise_scheduler
90
+
91
+ @property
92
+ def prediction_head(self):
93
+ return self.model.prediction_head
94
+
95
+ @property
96
+ def speech_scaling_factor(self):
97
+ return self.model.speech_scaling_factor
98
+
99
+ @property
100
+ def speech_bias_factor(self):
101
+ return self.model.speech_bias_factor
102
+
103
+ @property
104
+ def acoustic_tokenizer(self):
105
+ return self.model.acoustic_tokenizer
106
+
107
+ @property
108
+ def semantic_tokenizer(self):
109
+ return self.model.semantic_tokenizer
110
+
111
+ @property
112
+ def acoustic_connector(self):
113
+ return self.model.acoustic_connector
114
+
115
+ @property
116
+ def semantic_connector(self):
117
+ return self.model.semantic_connector
118
+
119
+ def tie_weights(self):
120
+ """
121
+ Tie the weights between the input embeddings and the output embeddings.
122
+ """
123
+ # Tie lm_head.weight to language_model.embed_tokens.weight
124
+ if not getattr(self.config, 'tie_word_embeddings', False):
125
+ return
126
+
127
+ if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'):
128
+ self.lm_head.weight = self.model.language_model.embed_tokens.weight
129
+
130
+ def get_input_embeddings(self):
131
+ return self.model.get_input_embeddings()
132
+
133
+ def set_input_embeddings(self, value):
134
+ self.model.set_input_embeddings(value)
135
+
136
+ def get_output_embeddings(self):
137
+ return self.lm_head
138
+
139
+ def set_output_embeddings(self, new_embeddings):
140
+ self.lm_head = new_embeddings
141
+
142
+ def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
143
+ """Set the speech tokenizers used for encoding and decoding speech."""
144
+ self.model.set_speech_tokenizers(acoustic_tokenizer, semantic_tokenizer)
145
+
146
+ def set_ddpm_inference_steps(self, num_steps=None):
147
+ self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps
148
+
149
+ def _process_speech_inputs(self, speech_tensors, speech_masks, speech_type="audio"):
150
+ """Process speech inputs through tokenizers and connectors."""
151
+ with torch.no_grad():
152
+ if speech_type == "audio":
153
+ # Encode audio to acoustic latents
154
+ encoder_output = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))
155
+ acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0]
156
+
157
+ # Apply scaling and bias
158
+ acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device)
159
+
160
+ # Connect to language model space
161
+ acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()]
162
+
163
+ return acoustic_features, acoustic_connected
164
+ elif speech_type == "pt":
165
+ encoder_output = VibeVoiceTokenizerEncoderOutput(mean=speech_tensors, std=self.acoustic_tokenizer.config.fix_std)
166
+ acoustic_latents = encoder_output.sample(dist_type=self.model.acoustic_tokenizer.std_dist_type)[0]
167
+
168
+ # Apply scaling and bias
169
+ acoustic_features = (acoustic_latents + self.model.speech_bias_factor.to(acoustic_latents.device)) * self.model.speech_scaling_factor.to(acoustic_latents.device)
170
+
171
+ # Connect to language model space
172
+ acoustic_connected = self.model.acoustic_connector(acoustic_features)[speech_masks.cpu()]
173
+
174
+ return acoustic_features, acoustic_connected
175
+ else:
176
+ raise NotImplementedError(f"Speech type {speech_type} not implemented")
177
+
178
+ # @can_return_tuple
179
+ def forward(
180
+ self,
181
+ input_ids: torch.LongTensor = None,
182
+ attention_mask: Optional[torch.Tensor] = None,
183
+ position_ids: Optional[torch.LongTensor] = None,
184
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
185
+ inputs_embeds: Optional[torch.FloatTensor] = None,
186
+ labels: Optional[torch.LongTensor] = None,
187
+ use_cache: Optional[bool] = None,
188
+ output_attentions: Optional[bool] = None,
189
+ output_hidden_states: Optional[bool] = None,
190
+ return_dict: Optional[bool] = None,
191
+ cache_position: Optional[torch.LongTensor] = None,
192
+ speech_tensors: Optional[torch.FloatTensor] = None,
193
+ speech_masks: Optional[torch.BoolTensor] = None,
194
+ speech_input_mask: Optional[torch.BoolTensor] = None,
195
+ logits_to_keep: Union[int, slice] = 0,
196
+ **kwargs,
197
+ ) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
198
+ """
199
+ Args:
200
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
201
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
202
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
203
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
204
+ speech_tensors (`torch.FloatTensor`, *optional*):
205
+ Input speech waveforms for voice cloning or speech understanding.
206
+ speech_masks (`torch.BoolTensor`, *optional*):
207
+ Masks indicating valid speech frames.
208
+ speech_input_mask (`torch.BoolTensor`, *optional*):
209
+ Positions in the input sequence where speech embeddings should be inserted.
210
+
211
+ Returns:
212
+ `VibeVoiceCausalLMOutputWithPast` or tuple
213
+ """
214
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
215
+
216
+ # Get embeddings
217
+ if inputs_embeds is None:
218
+ inputs_embeds = self.model.get_input_embeddings()(input_ids)
219
+
220
+ # Process speech inputs if provided
221
+ if speech_tensors is not None and speech_masks is not None:
222
+ acoustic_features, speech_embeds = self._process_speech_inputs(speech_tensors.to(self.dtype), speech_masks)
223
+ if speech_input_mask is not None:
224
+ inputs_embeds[speech_input_mask] = speech_embeds
225
+
226
+ outputs = self.model(
227
+ inputs_embeds=inputs_embeds,
228
+ attention_mask=attention_mask,
229
+ position_ids=position_ids,
230
+ past_key_values=past_key_values,
231
+ use_cache=use_cache,
232
+ output_attentions=output_attentions,
233
+ output_hidden_states=output_hidden_states,
234
+ return_dict=return_dict,
235
+ cache_position=cache_position,
236
+ **kwargs,
237
+ )
238
+
239
+ hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
240
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
241
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
242
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
243
+
244
+ if labels is not None:
245
+ raise NotImplementedError("Loss computation is not implemented in this version.")
246
+
247
+ return VibeVoiceCausalLMOutputWithPast(
248
+ logits=logits,
249
+ past_key_values=outputs.past_key_values,
250
+ last_hidden_state=hidden_states,
251
+ attentions=outputs.attentions,
252
+ )
253
+
254
+ def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs):
255
+ if generation_config is None:
256
+ generation_config = GenerationConfig(
257
+ bos_token_id=tokenizer.bos_token_id,
258
+ eos_token_id=tokenizer.eos_token_id,
259
+ pad_token_id = tokenizer.pad_token_id
260
+ )
261
+ else:
262
+ generation_config = GenerationConfig(
263
+ **generation_config,
264
+ bos_token_id=tokenizer.bos_token_id,
265
+ eos_token_id=tokenizer.eos_token_id,
266
+ pad_token_id = tokenizer.pad_token_id
267
+ )
268
+
269
+ generation_config, model_kwargs = self._prepare_generation_config(
270
+ generation_config,
271
+ True,
272
+ speech_start_id=tokenizer.speech_start_id,
273
+ speech_end_id=tokenizer.speech_end_id,
274
+ speech_diffusion_id=tokenizer.speech_diffusion_id,
275
+ **kwargs
276
+ )
277
+ generation_config.speech_start_id = tokenizer.speech_start_id
278
+ generation_config.speech_end_id = tokenizer.speech_end_id
279
+ generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id
280
+
281
+ inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs)
282
+ batch_size = inputs_tensor.shape[0]
283
+ device = self.device
284
+
285
+ self._prepare_special_tokens(generation_config, True, device=device)
286
+ generation_config.use_cache = True
287
+ model_kwargs["use_cache"] = generation_config.use_cache
288
+ input_ids = inputs_tensor.to(self.device)
289
+
290
+ input_ids_length = input_ids.shape[1]
291
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
292
+ has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
293
+ generation_config = self._prepare_generated_length(
294
+ generation_config=generation_config,
295
+ has_default_max_length=has_default_max_length,
296
+ has_default_min_length=has_default_min_length,
297
+ model_input_name=model_input_name,
298
+ inputs_tensor=inputs_tensor,
299
+ input_ids_length=input_ids_length,
300
+ )
301
+
302
+ max_cache_length = generation_config.max_length - 1
303
+ self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device)
304
+ model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long)
305
+ for k, v in model_kwargs.items():
306
+ if isinstance(v, torch.Tensor):
307
+ model_kwargs[k] = v.to(device=device)
308
+
309
+ if return_processors:
310
+ logits_processor = self._get_logits_processor(
311
+ generation_config=generation_config,
312
+ input_ids_seq_length=input_ids_length,
313
+ encoder_input_ids=inputs_tensor,
314
+ prefix_allowed_tokens_fn=None,
315
+ logits_processor=LogitsProcessorList(),
316
+ device=inputs_tensor.device,
317
+ model_kwargs=model_kwargs,
318
+ )
319
+
320
+ stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList())
321
+
322
+ return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria
323
+ else:
324
+ return generation_config, model_kwargs, input_ids
325
+
326
+ @torch.no_grad()
327
+ def generate(
328
+ self,
329
+ inputs: Optional[torch.Tensor] = None,
330
+ generation_config: Optional[GenerationConfig] = None,
331
+ logits_processor: Optional[LogitsProcessorList] = None,
332
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
333
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
334
+ synced_gpus: Optional[bool] = None,
335
+ assistant_model: Optional["PreTrainedModel"] = None,
336
+ audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None,
337
+ negative_prompt_ids: Optional[torch.Tensor] = None,
338
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
339
+ speech_tensors: Optional[torch.FloatTensor] = None,
340
+ speech_masks: Optional[torch.BoolTensor] = None,
341
+ speech_input_mask: Optional[torch.BoolTensor] = None,
342
+ return_speech: bool = True,
343
+ cfg_scale: float = 1.0,
344
+ stop_check_fn: Optional[Callable[[], bool]] = None,
345
+ **kwargs,
346
+ ) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]:
347
+ """
348
+ Generates sequences of token ids and optionally speech outputs.
349
+
350
+ Args:
351
+ All standard generation arguments from GenerationMixin
352
+ negative_prompt_ids: Negative prompt for CFG in speech generation
353
+ negative_prompt_attention_mask: Attention mask for negative prompt
354
+ speech_tensors: Input speech for voice cloning
355
+ speech_masks: Masks for speech tensors
356
+ speech_input_mask: Positions to insert speech embeddings
357
+ return_speech: Whether to decode and return speech outputs
358
+ cfg_scale: CFG scale for speech generation
359
+ stop_check_fn: Optional callable that returns True if generation should stop
360
+
361
+ Returns:
362
+ Generated token sequences and optionally speech outputs
363
+ """
364
+ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
365
+ tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria
366
+ parsed_scripts = kwargs.pop("parsed_scripts", None)
367
+ all_speakers_list = kwargs.pop("all_speakers_list", None)
368
+ max_length_times = kwargs.pop("max_length_times", 2)
369
+
370
+ if kwargs.get('max_new_tokens', None) is None:
371
+ kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - kwargs['input_ids'].shape[-1]
372
+
373
+ generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs(
374
+ generation_config, inputs, tokenizer, return_processors=True, **kwargs
375
+ )
376
+
377
+ negative_kwargs = {
378
+ 'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), tokenizer.speech_start_id, dtype=torch.long, device=kwargs['input_ids'].device),
379
+ 'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device),
380
+ 'max_new_tokens': kwargs.get('max_new_tokens', 100)
381
+ }
382
+ negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs(
383
+ None, None, tokenizer, return_processors=False, **negative_kwargs
384
+ )
385
+
386
+ acoustic_cache = VibeVoiceTokenizerStreamingCache()
387
+ semantic_cache = VibeVoiceTokenizerStreamingCache()
388
+
389
+ batch_size = input_ids.shape[0]
390
+ device = input_ids.device
391
+ finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device)
392
+ correct_cnt = torch.zeros(batch_size, dtype=torch.long, device=device)
393
+ is_prefill = True
394
+ inputs_embeds = None
395
+ verbose = kwargs.get("verbose", False)
396
+
397
+ # Initialize audio chunks storage for each sample
398
+ audio_chunks = [[] for _ in range(batch_size)]
399
+
400
+ initial_length = input_ids.shape[-1]
401
+ initial_length_per_sample = model_kwargs['attention_mask'].sum(dim=-1)
402
+
403
+ # Define all valid tokens that can be generated
404
+ valid_tokens = [
405
+ generation_config.speech_start_id,
406
+ generation_config.speech_end_id,
407
+ generation_config.speech_diffusion_id,
408
+ generation_config.eos_token_id
409
+ ]
410
+ # Add bos_token_id if it exists
411
+ if hasattr(generation_config, 'bos_token_id') and generation_config.bos_token_id is not None:
412
+ valid_tokens.append(generation_config.bos_token_id)
413
+
414
+ # Add custom processor to constrain token generation
415
+ token_constraint_processor = VibeVoiceTokenConstraintProcessor(valid_tokens, device=device)
416
+ if logits_processor is None:
417
+ logits_processor = LogitsProcessorList()
418
+ logits_processor.append(token_constraint_processor)
419
+
420
+ max_steps = min(generation_config.max_length - initial_length, int(max_length_times * initial_length))
421
+ max_step_per_sample = torch.min(generation_config.max_length - initial_length_per_sample, (max_length_times * initial_length_per_sample).long())
422
+ reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device)
423
+
424
+ # Create progress iterator if verbose
425
+ if kwargs.get("show_progress_bar", True):
426
+ progress_bar = tqdm(range(max_steps), desc="Generating", leave=False)
427
+ else:
428
+ progress_bar = range(max_steps)
429
+
430
+ for step in progress_bar:
431
+ # Check for external stop signal
432
+ if stop_check_fn is not None and stop_check_fn():
433
+ if verbose:
434
+ print(f"Generation stopped externally at step {step + 1}")
435
+ # End the audio streamer if it exists
436
+ if audio_streamer is not None:
437
+ audio_streamer.end()
438
+ break
439
+
440
+ # Check if audio_streamer has been ended (stopped externally)
441
+ if audio_streamer is not None and hasattr(audio_streamer, 'finished_flags'):
442
+ if any(audio_streamer.finished_flags):
443
+ if verbose:
444
+ print(f"Audio generation stopped externally at step {step + 1}")
445
+ break
446
+
447
+ if finished_tags.all():
448
+ if hasattr(progress_bar, 'set_description'):
449
+ progress_bar.set_description("Generation complete")
450
+ break
451
+
452
+ if input_ids.shape[-1] >= generation_config.max_length:
453
+ print(f"Reached maximum generation length {generation_config.max_length}, stopped it.")
454
+ reached_samples = torch.arange(batch_size, device=device)[~finished_tags]
455
+ if reached_samples.numel() > 0:
456
+ reach_max_step_sample[reached_samples] = True
457
+ break
458
+
459
+ # Update progress bar description with active samples
460
+ if hasattr(progress_bar, 'set_description'):
461
+ active_samples = (~finished_tags).sum().item()
462
+ progress_bar.set_description(f"Generating (active: {active_samples}/{batch_size})")
463
+
464
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
465
+ if is_prefill:
466
+ # we process the speech inputs only during the first generation step
467
+ prefill_inputs = {
468
+ "speech_tensors": speech_tensors.to(device=device),
469
+ "speech_masks": speech_masks.to(device),
470
+ "speech_input_mask": speech_input_mask.to(device),
471
+ }
472
+ is_prefill = False
473
+ else:
474
+ _ = model_inputs.pop('inputs_embeds', None)
475
+ prefill_inputs = {'inputs_embeds': inputs_embeds}
476
+
477
+ # Forward pass through the model
478
+ outputs = self(
479
+ **model_inputs, **prefill_inputs, logits_to_keep=1, return_dict=True, output_attentions=False, output_hidden_states=False,
480
+ )
481
+ model_kwargs = self._update_model_kwargs_for_generation(
482
+ outputs, model_kwargs, is_encoder_decoder=False,
483
+ )
484
+
485
+ # Get logits and apply logits processor
486
+ next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
487
+ # next_token_logits = outputs.logits[:, -1, :].to(copy=True, device=input_ids.device)
488
+ next_token_scores = logits_processor(input_ids, next_token_logits)
489
+
490
+ # token selection
491
+ if generation_config.do_sample:
492
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
493
+ # TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
494
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
495
+ else:
496
+ next_tokens = torch.argmax(next_token_scores, dim=-1)
497
+
498
+ next_tokens[finished_tags] = generation_config.eos_token_id
499
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
500
+
501
+ if not kwargs.get('refresh_negative', True):
502
+ negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs)
503
+ # Forward negative pass through the model
504
+ if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None:
505
+ negative_model_inputs['inputs_embeds'] = inputs_embeds
506
+ negative_model_inputs['input_ids'] = None
507
+
508
+ negative_outputs = self(
509
+ **negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False,
510
+ )
511
+ negative_model_kwargs = self._update_model_kwargs_for_generation(
512
+ negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
513
+ )
514
+ negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1)
515
+
516
+ # reached end of generation
517
+ if (next_tokens == generation_config.eos_token_id).any():
518
+ eos_indices = (next_tokens == generation_config.eos_token_id).nonzero(as_tuple=False).squeeze(1)
519
+ # Only print for samples that are newly finished (not already marked as finished)
520
+ new_eos_indices = eos_indices[~finished_tags[eos_indices]]
521
+ if new_eos_indices.numel() > 0:
522
+ finished_tags[new_eos_indices] = True
523
+ if verbose:
524
+ print(f"Samples {new_eos_indices.tolist()} reached EOS token at step {step + 1}.", flush=True)
525
+ if audio_streamer is not None:
526
+ audio_streamer.end(new_eos_indices)
527
+
528
+ # Check if any sample reached its maximum generation length
529
+ max_length_reached = step >= max_step_per_sample
530
+ new_max_length_indices = torch.nonzero(max_length_reached & ~finished_tags, as_tuple=False).squeeze(1)
531
+ if new_max_length_indices.numel() > 0:
532
+ finished_tags[new_max_length_indices] = True
533
+ reach_max_step_sample[new_max_length_indices] = True
534
+ if verbose:
535
+ print(f"Samples {new_max_length_indices.tolist()} reached max generation length at step {step + 1}.", flush=True)
536
+ if audio_streamer is not None:
537
+ audio_streamer.end(new_max_length_indices)
538
+
539
+ # speech_end
540
+ diffusion_end_indices = (next_tokens == generation_config.speech_end_id).nonzero(as_tuple=False).squeeze(1)
541
+ if diffusion_end_indices.numel() > 0:
542
+ # Clear tokenizer caches for samples that reached speech end
543
+ acoustic_cache.set_to_zero(diffusion_end_indices)
544
+ semantic_cache.set_to_zero(diffusion_end_indices)
545
+
546
+ # speech_begin
547
+ diffusion_start_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_start_id)]
548
+ if diffusion_start_indices.numel() > 0 and kwargs.get('refresh_negative', True):
549
+ # update attention mask
550
+ for i, sample_idx in enumerate(diffusion_start_indices.tolist()):
551
+ negative_model_kwargs['attention_mask'][sample_idx, :] = 0
552
+ negative_model_kwargs['attention_mask'][sample_idx, -1] = 1
553
+ # update past key values
554
+ for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache,
555
+ negative_model_kwargs['past_key_values'].value_cache)):
556
+ # Process each non-diffusion sample
557
+ for sample_idx in diffusion_start_indices.tolist():
558
+ # Shift cache for this sample
559
+ k_cache[sample_idx, :, -1, :] = k_cache[sample_idx, :, 0, :].clone()
560
+ v_cache[sample_idx, :, -1, :] = v_cache[sample_idx, :, 0, :].clone()
561
+ # update negative_input_ids
562
+ for sample_idx in diffusion_start_indices.tolist():
563
+ negative_input_ids[sample_idx, -1] = generation_config.speech_start_id
564
+
565
+ # Prepare inputs_embeds for next iteration
566
+ # Initialize with default embeddings for all tokens
567
+ next_inputs_embeds = self.model.get_input_embeddings()(next_tokens).unsqueeze(1) # [batch_size, 1, hidden_size]
568
+
569
+ # forward diffusion
570
+ # Diffusion indices are those that are not finished and not special tokens
571
+ diffusion_indices = torch.arange(batch_size, device=device)[~finished_tags & (next_tokens == generation_config.speech_diffusion_id)]
572
+
573
+ if diffusion_indices.numel() > 0:
574
+ if kwargs.get('refresh_negative', True):
575
+ negative_model_inputs = self.prepare_inputs_for_generation(negative_input_ids, **negative_model_kwargs)
576
+ # Forward negative pass through the model
577
+ if negative_model_inputs['inputs_embeds'] is None and inputs_embeds is not None:
578
+ negative_model_inputs['inputs_embeds'] = inputs_embeds
579
+ negative_model_inputs['input_ids'] = None
580
+
581
+ negative_outputs = self(
582
+ **negative_model_inputs, logits_to_keep=0, return_dict=True, output_attentions=False, output_hidden_states=False,
583
+ )
584
+ negative_model_kwargs = self._update_model_kwargs_for_generation(
585
+ negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
586
+ )
587
+ negative_input_ids = torch.cat([negative_input_ids, next_tokens[:, None]], dim=-1)
588
+ # correct the non-diffusion indices
589
+ # we forward all samples' negative outputs even if
590
+ # they are not in diffusion mode to keep the cache consistent
591
+ # So we need to correct the kv cache of non-diffusion samples
592
+ non_diffusion_mask = ~finished_tags & (next_tokens != generation_config.speech_diffusion_id)
593
+ if non_diffusion_mask.any():
594
+ non_diffusion_indices = torch.arange(batch_size, device=device)[non_diffusion_mask]
595
+ start_indices = correct_cnt[non_diffusion_indices]
596
+
597
+ # 1. Update attention_mask - need to handle each sample separately
598
+ seq_len = negative_model_kwargs['attention_mask'].shape[1]
599
+ for i, (sample_idx, start_idx) in enumerate(zip(non_diffusion_indices.tolist(), start_indices.tolist())):
600
+ # Shift the attention mask for this sample
601
+ if start_idx + 1 < seq_len - 1:
602
+ negative_model_kwargs['attention_mask'][sample_idx, start_idx+1:] = \
603
+ negative_model_kwargs['attention_mask'][sample_idx, start_idx:-1].clone()
604
+ negative_model_kwargs['attention_mask'][sample_idx, start_idx] = 0
605
+
606
+ # 2. Update past_key_values
607
+ for layer_idx, (k_cache, v_cache) in enumerate(zip(negative_model_kwargs['past_key_values'].key_cache,
608
+ negative_model_kwargs['past_key_values'].value_cache)):
609
+ # Process each non-diffusion sample
610
+ for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()):
611
+ if start_idx + 1 < k_cache.shape[2] - 1:
612
+ # Shift cache for this sample
613
+ k_cache[sample_idx, :, start_idx+1:, :] = k_cache[sample_idx, :, start_idx:-1, :].clone()
614
+ v_cache[sample_idx, :, start_idx+1:, :] = v_cache[sample_idx, :, start_idx:-1, :].clone()
615
+
616
+ # 3. Update negative_input_ids
617
+ for sample_idx, start_idx in zip(non_diffusion_indices.tolist(), start_indices.tolist()):
618
+ if start_idx + 1 < negative_input_ids.shape[1] - 1:
619
+ negative_input_ids[sample_idx, start_idx+1:] = \
620
+ negative_input_ids[sample_idx, start_idx:-1].clone()
621
+
622
+ correct_cnt[non_diffusion_indices] += 1
623
+
624
+ positive_condition = outputs.last_hidden_state[diffusion_indices, -1, :]
625
+ negative_condition = negative_outputs.last_hidden_state[diffusion_indices, -1, :]
626
+
627
+ speech_latent = self.sample_speech_tokens(
628
+ positive_condition,
629
+ negative_condition,
630
+ cfg_scale=cfg_scale,
631
+ ).unsqueeze(1)
632
+
633
+ # Decode acoustic latent to audio using acoustic streaming cache
634
+ scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device)
635
+ audio_chunk = self.model.acoustic_tokenizer.decode(
636
+ scaled_latent.to(self.model.acoustic_tokenizer.device),
637
+ cache=acoustic_cache, # Use acoustic-specific cache
638
+ sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device),
639
+ use_cache=True,
640
+ debug=False
641
+ )
642
+
643
+ # Store audio chunks for each sample
644
+ for i, sample_idx in enumerate(diffusion_indices):
645
+ idx = sample_idx.item()
646
+ # Only append audio chunk if the sample is not finished
647
+ if not finished_tags[idx]:
648
+ audio_chunks[idx].append(audio_chunk[i])
649
+
650
+ # Add streaming support here
651
+ if audio_streamer is not None:
652
+ # Stream the audio chunks immediately
653
+ audio_streamer.put(audio_chunk, diffusion_indices)
654
+
655
+ # Encode audio to semantic features using semantic streaming cache
656
+ semantic_features = self.model.semantic_tokenizer.encode(
657
+ audio_chunk,
658
+ cache=semantic_cache, # Use semantic-specific cache
659
+ sample_indices=diffusion_indices,
660
+ use_cache=True,
661
+ debug=False
662
+ ).mean # semantic tokenizer has no VAE.
663
+
664
+ # Combine acoustic and semantic features for next input
665
+ acoustic_embed = self.model.acoustic_connector(speech_latent)
666
+ semantic_embed = self.model.semantic_connector(semantic_features)
667
+ diffusion_embeds = acoustic_embed + semantic_embed
668
+
669
+ # Update embeddings for diffusion indices
670
+ next_inputs_embeds[diffusion_indices] = diffusion_embeds
671
+
672
+ # Set inputs_embeds for next iteration
673
+ inputs_embeds = next_inputs_embeds
674
+
675
+ if audio_streamer is not None:
676
+ audio_streamer.end()
677
+
678
+ # Concatenate audio chunks for each sample
679
+ final_audio_outputs = []
680
+ for sample_chunks in audio_chunks:
681
+ if sample_chunks:
682
+ # Concatenate all chunks along the time dimension (assumed to be the last dimension)
683
+ concatenated_audio = torch.cat(sample_chunks, dim=-1)
684
+ final_audio_outputs.append(concatenated_audio)
685
+ else:
686
+ # If no audio was generated for this sample, append None
687
+ final_audio_outputs.append(None)
688
+
689
+ return VibeVoiceGenerationOutput(
690
+ sequences=input_ids,
691
+ speech_outputs=final_audio_outputs if return_speech else None,
692
+ reach_max_step_sample=reach_max_step_sample,
693
+ )
694
+
695
+ @torch.no_grad()
696
+ def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0):
697
+ self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps)
698
+ condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device)
699
+ speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition)
700
+ for t in self.model.noise_scheduler.timesteps:
701
+ half = speech[: len(speech) // 2]
702
+ combined = torch.cat([half, half], dim=0)
703
+ eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition)
704
+ cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
705
+ half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
706
+ eps = torch.cat([half_eps, half_eps], dim=0)
707
+ speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample
708
+ return speech[: len(speech) // 2]
709
+
710
+
711
+ AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGenerationInference)
712
+
713
+ __all__ = [
714
+ "VibeVoiceForConditionalGenerationInference",
715
+ ]
modular/modular_vibevoice_diffusion_head.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from transformers.models.auto import AutoModel
9
+ from transformers.modeling_utils import PreTrainedModel
10
+ # from transformers.modeling_layers import GradientCheckpointingLayer
11
+ from transformers.activations import ACT2FN
12
+ from transformers.utils import logging
13
+
14
+ from .configuration_vibevoice import VibeVoiceDiffusionHeadConfig
15
+
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ class RMSNorm(nn.Module):
21
+ def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine=True, memory_efficient=False):
22
+ super().__init__()
23
+ self.dim = dim
24
+ self.eps = eps
25
+ self.elementwise_affine = elementwise_affine
26
+ if self.elementwise_affine:
27
+ self.weight = nn.Parameter(torch.ones(dim))
28
+ else:
29
+ self.register_parameter('weight', None)
30
+
31
+ def _norm(self, x):
32
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
33
+
34
+ def forward(self, x):
35
+ output = self._norm(x.float()).type_as(x)
36
+ if self.weight is not None:
37
+ output = output * self.weight
38
+ return output
39
+
40
+ def extra_repr(self) -> str:
41
+ return f'dim={self.dim}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
42
+
43
+ def modulate(x, shift, scale):
44
+ """Apply modulation to input tensor."""
45
+ return x * (1 + scale) + shift
46
+
47
+
48
+ class TimestepEmbedder(nn.Module):
49
+ """
50
+ Embeds scalar timesteps into vector representations.
51
+
52
+ Args:
53
+ hidden_size (`int`): Size of the output embedding
54
+ frequency_embedding_size (`int`, optional): Size of the intermediate frequency embedding
55
+ """
56
+ def __init__(self, hidden_size, frequency_embedding_size=256):
57
+ super().__init__()
58
+ self.mlp = nn.Sequential(
59
+ nn.Linear(frequency_embedding_size, hidden_size, bias=False),
60
+ # nn.SiLU(),
61
+ ACT2FN['silu'],
62
+ nn.Linear(hidden_size, hidden_size, bias=False),
63
+ )
64
+ self.frequency_embedding_size = frequency_embedding_size
65
+
66
+ @staticmethod
67
+ def timestep_embedding(t, dim, max_period=10000):
68
+ """
69
+ Create sinusoidal timestep embeddings.
70
+
71
+ Args:
72
+ t (`torch.Tensor`): A 1-D Tensor of N indices, one per batch element.
73
+ These may be fractional.
74
+ dim (`int`): The dimension of the output.
75
+ max_period (`int`, optional): Controls the minimum frequency of the embeddings.
76
+
77
+ Returns:
78
+ `torch.Tensor`: An [N, D] Tensor of positional embeddings.
79
+ """
80
+ half = dim // 2
81
+ freqs = torch.exp(
82
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
83
+ ).to(t.device)
84
+ args = t[:, None].float() * freqs[None]
85
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
86
+ if dim % 2:
87
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
88
+ return embedding.to(t.dtype)
89
+
90
+ def forward(self, t):
91
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
92
+ t_emb = self.mlp(t_freq)
93
+ return t_emb
94
+
95
+
96
+ class FeedForwardNetwork(nn.Module):
97
+ """
98
+ Standard feed-forward network with SwiGLU activation.
99
+
100
+ Args:
101
+ embed_dim (`int`): Input dimension
102
+ ffn_dim (`int`): Hidden dimension
103
+ """
104
+ def __init__(
105
+ self,
106
+ embed_dim,
107
+ ffn_dim,
108
+ ):
109
+ super().__init__()
110
+ self.embed_dim = embed_dim
111
+ self.gate_proj = nn.Linear(self.embed_dim, ffn_dim, bias=False)
112
+ self.up_proj = nn.Linear(self.embed_dim, ffn_dim, bias=False)
113
+ self.down_proj = nn.Linear(ffn_dim, self.embed_dim, bias=False)
114
+ self.act_fn = ACT2FN['silu'] # Using SiLU as the activation function
115
+
116
+ def forward(self, x):
117
+ gate = self.gate_proj(x)
118
+ up = self.up_proj(x)
119
+
120
+ # SwiGLU activation
121
+ # gate = F.silu(gate)
122
+ gate = self.act_fn(gate)
123
+ return self.down_proj(gate * up)
124
+
125
+
126
+ class HeadLayer(nn.Module):
127
+ """
128
+ A layer in the diffusion head.
129
+
130
+ Args:
131
+ embed_dim (`int`): Input dimension
132
+ ffn_dim (`int`): Hidden dimension
133
+ cond_dim (`int`): Condition embedding dimension
134
+ norm_eps (`float`, optional): Epsilon for normalization
135
+ """
136
+ def __init__(
137
+ self,
138
+ embed_dim,
139
+ ffn_dim,
140
+ cond_dim,
141
+ norm_eps=1e-5,
142
+ ):
143
+ super().__init__()
144
+ self.embed_dim = embed_dim
145
+ self.cond_dim = cond_dim
146
+ self.ffn_dim = ffn_dim
147
+ self.ffn = FeedForwardNetwork(
148
+ self.embed_dim,
149
+ self.ffn_dim,
150
+ )
151
+ self.norm = RMSNorm(self.embed_dim, eps=norm_eps)
152
+ self.adaLN_modulation = nn.Sequential(
153
+ # nn.SiLU(),
154
+ ACT2FN['silu'],
155
+ nn.Linear(cond_dim, 3 * self.embed_dim, bias=False)
156
+ )
157
+
158
+ def forward(self, x, c):
159
+ shift_ffn, scale_ffn, gate_ffn = self.adaLN_modulation(c).chunk(3, dim=-1)
160
+ x = x + gate_ffn * self.ffn(modulate(self.norm(x), shift_ffn, scale_ffn))
161
+ return x
162
+
163
+
164
+ class FinalLayer(nn.Module):
165
+ """
166
+ Final layer in the diffusion head.
167
+
168
+ Args:
169
+ hidden_size (`int`): Input dimension
170
+ output_size (`int`): Output dimension
171
+ cond_size (`int`): Condition embedding dimension
172
+ norm_eps (`float`, optional): Epsilon for normalization
173
+ """
174
+ def __init__(self, hidden_size, output_size, cond_size, norm_eps=1e-5):
175
+ super().__init__()
176
+ self.norm_final = RMSNorm(hidden_size, eps=norm_eps, elementwise_affine=False)
177
+ self.linear = nn.Linear(hidden_size, output_size, bias=False)
178
+ self.adaLN_modulation = nn.Sequential(
179
+ # nn.SiLU(),
180
+ ACT2FN['silu'],
181
+ nn.Linear(cond_size, 2 * hidden_size, bias=False)
182
+ )
183
+
184
+ def forward(self, x, c):
185
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
186
+ x = modulate(self.norm_final(x), shift, scale)
187
+ x = self.linear(x)
188
+ return x
189
+
190
+
191
+ class VibeVoiceDiffusionHead(PreTrainedModel):
192
+ """
193
+ Diffusion head model for vibevoice.
194
+
195
+ Args:
196
+ config (`VibeVoiceDiffusionHeadConfig`): Model configuration
197
+ latent_size (`int`, optional): Size of the latent space. If not provided, uses `config.latent_size`.
198
+ """
199
+ config_class = VibeVoiceDiffusionHeadConfig
200
+ supports_gradient_checkpointing = True
201
+ _supports_flash_attn_2 = True
202
+ _supports_sdpa = True
203
+
204
+ def __init__(
205
+ self,
206
+ config,
207
+ ):
208
+ super().__init__(config)
209
+ self.config = config
210
+ self.cond_dim = config.hidden_size
211
+ latent_size = config.latent_size
212
+
213
+ self.noisy_images_proj = nn.Linear(latent_size, config.hidden_size, bias=False)
214
+ self.cond_proj = nn.Linear(config.hidden_size, self.cond_dim, bias=False)
215
+ self.t_embedder = TimestepEmbedder(self.cond_dim)
216
+
217
+ ffn_dim = int(config.hidden_size * config.head_ffn_ratio)
218
+
219
+ # Create the intermediate layers
220
+ self.layers = nn.ModuleList([
221
+ HeadLayer(
222
+ embed_dim=config.hidden_size,
223
+ ffn_dim=ffn_dim,
224
+ cond_dim=self.cond_dim,
225
+ norm_eps=config.rms_norm_eps
226
+ )
227
+ for _ in range(config.head_layers)
228
+ ])
229
+
230
+ # Final layer for output
231
+ self.final_layer = FinalLayer(
232
+ hidden_size=config.hidden_size,
233
+ output_size=latent_size,
234
+ cond_size=self.cond_dim,
235
+ norm_eps=config.rms_norm_eps
236
+ )
237
+
238
+ self.initialize_weights()
239
+
240
+ def initialize_weights(self):
241
+ """Initialize the weights of the model."""
242
+ # Initialize timestep embedder
243
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
244
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
245
+
246
+ # Zero-out adaLN modulation layers
247
+ for layer in self.layers:
248
+ nn.init.constant_(layer.adaLN_modulation[-1].weight, 0)
249
+
250
+ # Zero-out output layers
251
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
252
+ nn.init.constant_(self.final_layer.linear.weight, 0)
253
+
254
+ def forward(
255
+ self,
256
+ noisy_images,
257
+ timesteps,
258
+ condition,
259
+ ):
260
+ """
261
+ Forward pass of the prediction head.
262
+
263
+ Args:
264
+ noisy_images (`torch.Tensor`): Noisy images/latents to denoise
265
+ timesteps (`torch.Tensor`): Timesteps for diffusion
266
+ condition (`torch.Tensor`): Conditioning information
267
+
268
+ Returns:
269
+ `torch.Tensor`: The predicted noise/velocity
270
+ """
271
+ x = self.noisy_images_proj(noisy_images)
272
+ t = self.t_embedder(timesteps)
273
+ condition = self.cond_proj(condition)
274
+ c = condition + t
275
+
276
+ for layer in self.layers:
277
+ x = layer(x, c)
278
+
279
+ x = self.final_layer(x, c)
280
+ return x
281
+
282
+
283
+ AutoModel.register(VibeVoiceDiffusionHeadConfig, VibeVoiceDiffusionHead)
284
+
285
+ __all__ = [
286
+ "VibeVoiceDiffusionHead",
287
+ ]
modular/modular_vibevoice_text_tokenizer.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tokenization classes for vibevoice."""
2
+
3
+ from typing import List, Optional, Union
4
+
5
+ from transformers.utils import logging
6
+ from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
7
+ from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+
12
+ class VibeVoiceTextTokenizer(Qwen2Tokenizer):
13
+ """
14
+ Construct a VibeVoice tokenizer. Based on the Qwen2 tokenizer with additional special tokens for speech.
15
+
16
+ Args:
17
+ vocab_file (`str`):
18
+ Path to the vocabulary file.
19
+ merges_file (`str`):
20
+ Path to the merges file.
21
+ errors (`str`, *optional*, defaults to `"replace"`):
22
+ Paradigm to follow when decoding bytes to UTF-8.
23
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
24
+ The unknown token.
25
+ bos_token (`str`, *optional*):
26
+ The beginning of sequence token. Not used for vibevoice.
27
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
28
+ The end of sequence token.
29
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
30
+ The token used for padding.
31
+ add_special_tokens (`bool`, *optional*, defaults to `True`):
32
+ Whether or not to add special tokens when encoding.
33
+ """
34
+
35
+ model_input_names = ["input_ids", "attention_mask"]
36
+
37
+ def __init__(
38
+ self,
39
+ vocab_file,
40
+ merges_file,
41
+ errors="replace",
42
+ unk_token="<|endoftext|>",
43
+ bos_token=None,
44
+ eos_token="<|endoftext|>",
45
+ pad_token="<|endoftext|>",
46
+ add_prefix_space=False,
47
+ add_special_tokens=True,
48
+ **kwargs,
49
+ ):
50
+ super().__init__(
51
+ vocab_file=vocab_file,
52
+ merges_file=merges_file,
53
+ errors=errors,
54
+ unk_token=unk_token,
55
+ bos_token=bos_token,
56
+ eos_token=eos_token,
57
+ pad_token=pad_token,
58
+ add_prefix_space=add_prefix_space,
59
+ add_special_tokens=add_special_tokens,
60
+ **kwargs,
61
+ )
62
+
63
+ # Add VibeVoice-specific special tokens
64
+ self._add_vibevoice_special_tokens()
65
+
66
+ def _add_vibevoice_special_tokens(self):
67
+ """Add VibeVoice-specific special tokens."""
68
+ special_tokens = {
69
+ "additional_special_tokens": [
70
+ "<|vision_start|>", # Speech start (reusing vision tokens)
71
+ "<|vision_end|>", # Speech end
72
+ "<|vision_pad|>", # Speech diffusion pad
73
+ ]
74
+ }
75
+ num_added = self.add_special_tokens(special_tokens)
76
+
77
+ # Cache special token IDs
78
+ self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
79
+ self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
80
+ self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
81
+
82
+ self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
83
+
84
+ return num_added
85
+
86
+ @property
87
+ def eos_id(self) -> int:
88
+ """Id of the end of sequence token."""
89
+ return self._eos_id
90
+
91
+ @property
92
+ def speech_start_id(self) -> int:
93
+ """Id of the speech start token."""
94
+ return self._speech_start_id
95
+
96
+ @property
97
+ def speech_end_id(self) -> int:
98
+ """Id of the speech end token."""
99
+ return self._speech_end_id
100
+
101
+ @property
102
+ def speech_diffusion_id(self) -> int:
103
+ """Id of the speech diffusion token."""
104
+ return self._speech_diffusion_id
105
+
106
+ @property
107
+ def pad_id(self) -> int:
108
+ """Id used for padding (returns -100 for loss masking)."""
109
+ return -100
110
+
111
+
112
+ class VibeVoiceTextTokenizerFast(Qwen2TokenizerFast):
113
+ """
114
+ Construct a "fast" VibeVoice tokenizer (backed by HuggingFace's *tokenizers* library).
115
+ Based on the Qwen2 tokenizer with additional special tokens for speech.
116
+
117
+ Args:
118
+ vocab_file (`str`, *optional*):
119
+ Path to the vocabulary file.
120
+ merges_file (`str`, *optional*):
121
+ Path to the merges file.
122
+ tokenizer_file (`str`, *optional*):
123
+ Path to [tokenizers](https://github.com/huggingface/tokenizers) file.
124
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
125
+ The unknown token.
126
+ bos_token (`str`, *optional*):
127
+ The beginning of sequence token. Not used for vibevoice.
128
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
129
+ The end of sequence token.
130
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
131
+ The token used for padding.
132
+ """
133
+
134
+ model_input_names = ["input_ids", "attention_mask"]
135
+
136
+ def __init__(
137
+ self,
138
+ vocab_file=None,
139
+ merges_file=None,
140
+ tokenizer_file=None,
141
+ unk_token="<|endoftext|>",
142
+ bos_token=None,
143
+ eos_token="<|endoftext|>",
144
+ pad_token="<|endoftext|>",
145
+ add_prefix_space=False,
146
+ **kwargs,
147
+ ):
148
+ super().__init__(
149
+ vocab_file=vocab_file,
150
+ merges_file=merges_file,
151
+ tokenizer_file=tokenizer_file,
152
+ unk_token=unk_token,
153
+ bos_token=bos_token,
154
+ eos_token=eos_token,
155
+ pad_token=pad_token,
156
+ add_prefix_space=add_prefix_space,
157
+ **kwargs,
158
+ )
159
+
160
+ # Add VibeVoice-specific special tokens
161
+ self._add_vibevoice_special_tokens()
162
+
163
+ def _add_vibevoice_special_tokens(self):
164
+ """Add VibeVoice-specific special tokens."""
165
+ special_tokens = {
166
+ "additional_special_tokens": [
167
+ "<|vision_start|>", # Speech start (reusing vision tokens)
168
+ "<|vision_end|>", # Speech end
169
+ "<|vision_pad|>", # Speech diffusion pad
170
+ ]
171
+ }
172
+ num_added = self.add_special_tokens(special_tokens)
173
+
174
+ # Cache special token IDs
175
+ self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
176
+ self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
177
+ self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
178
+
179
+ # self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
180
+ self._eos_id = self.eos_token_id # qwen2 / qwen3
181
+ self._pad_id = self.convert_tokens_to_ids('<|image_pad|>')
182
+
183
+ return num_added
184
+
185
+ @property
186
+ def eos_id(self) -> int:
187
+ """Id of the end of sequence token."""
188
+ return self._eos_id
189
+
190
+ @property
191
+ def speech_start_id(self) -> int:
192
+ """Id of the speech start token."""
193
+ return self._speech_start_id
194
+
195
+ @property
196
+ def speech_end_id(self) -> int:
197
+ """Id of the speech end token."""
198
+ return self._speech_end_id
199
+
200
+ @property
201
+ def speech_diffusion_id(self) -> int:
202
+ """Id of the speech diffusion token."""
203
+ return self._speech_diffusion_id
204
+
205
+ @property
206
+ def pad_id(self) -> int:
207
+ """Id used for padding (returns -100 for loss masking)."""
208
+ return self._pad_id
209
+
210
+
211
+ __all__ = [
212
+ "VibeVoiceTextTokenizer",
213
+ "VibeVoiceTextTokenizerFast",
214
+ ]
modular/modular_vibevoice_tokenizer.py ADDED
@@ -0,0 +1,1195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import typing as tp
3
+ from functools import partial
4
+ from dataclasses import dataclass, field
5
+ from typing import Dict, List, Optional, Tuple, Union
6
+ import copy
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+ from transformers.models.auto import AutoModel
14
+
15
+ from transformers.configuration_utils import PretrainedConfig
16
+ from transformers.utils import logging
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.activations import ACT2FN
19
+
20
+ from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceSemanticTokenizerConfig
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ import os
25
+ # Try to import APEX FusedRMSNorm
26
+ try:
27
+ from apex.normalization.fused_layer_norm import fused_rms_norm_affine
28
+ APEX_AVAILABLE = True
29
+ logger.info("APEX FusedRMSNorm is available and will be used for optimization")
30
+ if int(os.getenv("OPTIMIZE_FOR_SPEED", "0")) == 0:
31
+ APEX_AVAILABLE = False
32
+ logger.warning("APEX FusedRMSNorm is disabled by environment variable OPTIMIZE_FOR_SPEED=0")
33
+ except ImportError:
34
+ APEX_AVAILABLE = False
35
+ logger.warning("APEX FusedRMSNorm not available, using native implementation")
36
+ # APEX_AVAILABLE=False
37
+
38
+ # Normalization modules
39
+ class ConvLayerNorm(nn.LayerNorm):
40
+ """
41
+ Convolution-friendly LayerNorm that moves channels to last dimensions
42
+ before running the normalization and moves them back to original position right after.
43
+ """
44
+ def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
45
+ super().__init__(normalized_shape, **kwargs)
46
+
47
+ def forward(self, x):
48
+ x = x.transpose(1, 2) # b ... t -> b t ...
49
+ x = nn.functional.layer_norm(x.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).type_as(x)
50
+ x = x.transpose(1, 2) # b t ... -> b ... t
51
+ return x
52
+
53
+ class RMSNorm(nn.Module):
54
+ def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
55
+ super().__init__()
56
+ self.dim = dim
57
+ self.eps = eps
58
+ self.elementwise_affine = elementwise_affine
59
+ if self.elementwise_affine:
60
+ weight_shape = (dim,) if weight_shape is None else weight_shape
61
+ self.weight = nn.Parameter(torch.ones(weight_shape))
62
+ else:
63
+ self.register_parameter('weight', None)
64
+
65
+ def _norm(self, x):
66
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
67
+
68
+ def forward(self, x):
69
+ output = self._norm(x.float()).type_as(x)
70
+ if self.weight is not None:
71
+ output = output * self.weight
72
+ return output
73
+
74
+ def extra_repr(self) -> str:
75
+ return f'dim={self.dim}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
76
+
77
+ class ConvRMSNorm(RMSNorm):
78
+ def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
79
+ super().__init__(dim, eps, elementwise_affine, weight_shape)
80
+
81
+ def forward(self, x):
82
+ x = x.transpose(1, 2) # b ... t -> b t ...
83
+ if (not APEX_AVAILABLE) or (not self.elementwise_affine):
84
+ # Fallback to native implementation
85
+ output = self._norm(x.float()).type_as(x)
86
+ if self.weight is not None:
87
+ output = output * self.weight
88
+ else:
89
+ output = fused_rms_norm_affine(x, self.weight, self.weight.shape, self.eps)
90
+ output = output.transpose(1, 2) # b t ... -> b ... t
91
+ return output
92
+
93
+ # Convolutional layers and utilities
94
+ CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
95
+ 'time_layer_norm', 'layer_norm', 'time_group_norm'])
96
+
97
+
98
+ def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
99
+ assert norm in CONV_NORMALIZATIONS
100
+ if norm == 'weight_norm':
101
+ return nn.utils.weight_norm(module)
102
+ elif norm == 'spectral_norm':
103
+ return nn.utils.spectral_norm(module)
104
+ else:
105
+ # We already check was in CONV_NORMALIZATION, so any other choice
106
+ # doesn't need reparametrization.
107
+ return module
108
+
109
+
110
+ def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
111
+ """Return the proper normalization module. If causal is True, this will ensure the returned
112
+ module is causal, or return an error if the normalization doesn't support causal evaluation.
113
+ """
114
+ assert norm in CONV_NORMALIZATIONS
115
+ if norm == 'layer_norm':
116
+ assert isinstance(module, nn.modules.conv._ConvNd)
117
+ return ConvLayerNorm(module.out_channels, **norm_kwargs)
118
+ elif norm == 'time_group_norm':
119
+ if causal:
120
+ raise ValueError("GroupNorm doesn't support causal evaluation.")
121
+ assert isinstance(module, nn.modules.conv._ConvNd)
122
+ return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
123
+ else:
124
+ return nn.Identity()
125
+
126
+
127
+ def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
128
+ padding_total: int = 0) -> int:
129
+ """Calculate extra padding needed for convolution to have the same output length"""
130
+ length = x.shape[-1]
131
+ n_frames = (length - kernel_size + padding_total) / stride + 1
132
+ ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
133
+ return ideal_length - length
134
+
135
+
136
+ def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
137
+ """Pad 1D input with handling for small inputs in reflect mode"""
138
+ length = x.shape[-1]
139
+ padding_left, padding_right = paddings
140
+ assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
141
+ if mode == 'reflect':
142
+ max_pad = max(padding_left, padding_right)
143
+ extra_pad = 0
144
+ if length <= max_pad:
145
+ extra_pad = max_pad - length + 1
146
+ x = F.pad(x, (0, extra_pad))
147
+ padded = F.pad(x, paddings, mode, value)
148
+ end = padded.shape[-1] - extra_pad
149
+ return padded[..., :end]
150
+ else:
151
+ return F.pad(x, paddings, mode, value)
152
+
153
+
154
+ def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
155
+ """Remove padding from x, handling properly zero padding. Only for 1d!"""
156
+ padding_left, padding_right = paddings
157
+ assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
158
+ assert (padding_left + padding_right) <= x.shape[-1]
159
+ end = x.shape[-1] - padding_right
160
+ return x[..., padding_left: end]
161
+
162
+
163
+ class NormConv1d(nn.Module):
164
+ """Wrapper around Conv1d and normalization applied to this conv"""
165
+ def __init__(self, *args, causal: bool = False, norm: str = 'none',
166
+ norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
167
+ super().__init__()
168
+ self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
169
+ self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
170
+ self.norm_type = norm
171
+
172
+ def forward(self, x):
173
+ x = self.conv(x)
174
+ x = self.norm(x)
175
+ return x
176
+
177
+
178
+ class NormConvTranspose1d(nn.Module):
179
+ """Wrapper around ConvTranspose1d and normalization applied to this conv"""
180
+ def __init__(self, *args, causal: bool = False, norm: str = 'none',
181
+ norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
182
+ super().__init__()
183
+ self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
184
+ self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
185
+ self.norm_type = norm
186
+
187
+ def forward(self, x):
188
+ x = self.convtr(x)
189
+ x = self.norm(x)
190
+ return x
191
+
192
+
193
+ class VibeVoiceTokenizerStreamingCache:
194
+ """Cache for streaming convolution, similar to KV cache in attention"""
195
+ def __init__(self):
196
+ self.cache = {} # Dict mapping (layer_id, sample_idx) to state tensor
197
+
198
+ def get(self, layer_id: str, sample_indices: torch.Tensor) -> Optional[torch.Tensor]:
199
+ """Get cached states for given layer and sample indices"""
200
+ states = []
201
+ max_length = 0
202
+
203
+ # First pass: collect states and find max length
204
+ for idx in sample_indices.tolist():
205
+ key = (layer_id, idx)
206
+ if key not in self.cache:
207
+ return None # If any sample is missing, return None
208
+ state = self.cache[key]
209
+ states.append(state)
210
+ max_length = max(max_length, state.shape[-1])
211
+
212
+ # Second pass: pad states to max length if needed
213
+ if len(states) > 0 and states[0].dim() >= 2:
214
+ padded_states = []
215
+ for state in states:
216
+ if state.shape[-1] < max_length:
217
+ # Pad on the time dimension (last dimension)
218
+ pad_size = max_length - state.shape[-1]
219
+ # Pad with zeros on the LEFT to align the most recent samples
220
+ padded_state = F.pad(state, (pad_size, 0), mode='constant', value=0)
221
+ padded_states.append(padded_state)
222
+ else:
223
+ padded_states.append(state)
224
+ return torch.stack(padded_states, dim=0)
225
+ else:
226
+ return torch.stack(states, dim=0)
227
+
228
+ def set(self, layer_id: str, sample_indices: torch.Tensor, states: torch.Tensor):
229
+ """Set cached states for given layer and sample indices"""
230
+ for i, idx in enumerate(sample_indices.tolist()):
231
+ key = (layer_id, idx)
232
+ self.cache[key] = states[i].detach()
233
+
234
+ def set_to_zero(self, sample_indices: torch.Tensor):
235
+ """Set all cached states to zero for given sample indices"""
236
+ for key in list(self.cache.keys()):
237
+ layer_id, sample_idx = key
238
+ if sample_idx in sample_indices.tolist():
239
+ # Create zero tensor with same shape and dtype as cached tensor
240
+ cached_tensor = self.cache[key]
241
+ self.cache[key] = torch.zeros_like(cached_tensor)
242
+
243
+ def clear(self, layer_id: Optional[str] = None, sample_indices: Optional[torch.Tensor] = None):
244
+ """Clear cache for specific layer/samples or everything"""
245
+ if layer_id is None and sample_indices is None:
246
+ self.cache.clear()
247
+ elif layer_id is not None and sample_indices is None:
248
+ # Clear all samples for a specific layer
249
+ keys_to_remove = [k for k in self.cache.keys() if k[0] == layer_id]
250
+ for k in keys_to_remove:
251
+ del self.cache[k]
252
+ elif layer_id is not None and sample_indices is not None:
253
+ # Clear specific samples for a specific layer
254
+ for idx in sample_indices.tolist():
255
+ key = (layer_id, idx)
256
+ self.cache.pop(key, None)
257
+
258
+ class SConv1d(nn.Module):
259
+ """Conv1d with built-in handling of asymmetric or causal padding and normalization."""
260
+ def __init__(self, in_channels: int, out_channels: int,
261
+ kernel_size: int, stride: int = 1, dilation: int = 1,
262
+ groups: int = 1, bias: bool = True, causal: bool = False,
263
+ norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
264
+ pad_mode: str = 'reflect'):
265
+ super().__init__()
266
+ self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
267
+ dilation=dilation, groups=groups, bias=bias, causal=causal,
268
+ norm=norm, norm_kwargs=norm_kwargs)
269
+ self.causal = causal
270
+ self.pad_mode = pad_mode
271
+
272
+ # Store configuration
273
+ self.kernel_size = kernel_size
274
+ self.dilation = dilation
275
+ self.stride = stride
276
+ self.in_channels = in_channels
277
+ self.out_channels = out_channels
278
+
279
+ # For causal convolution, we need to maintain kernel_size - 1 samples as context
280
+ # need to check use which context_size is more suitable
281
+ # self.context_size = (kernel_size - 1) * dilation
282
+ self.context_size = (kernel_size - 1) * dilation - (stride - 1)
283
+
284
+ # For non-streaming mode, calculate padding
285
+ self.padding_total = (kernel_size - 1) * dilation - (stride - 1)
286
+
287
+ # Create a unique layer ID for cache management
288
+ self._layer_id = None
289
+
290
+ @property
291
+ def layer_id(self):
292
+ if self._layer_id is None:
293
+ self._layer_id = f"sconv1d_{id(self)}"
294
+ return self._layer_id
295
+
296
+ def forward(self, x: torch.Tensor,
297
+ cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
298
+ sample_indices: Optional[torch.Tensor] = None,
299
+ use_cache: bool = False,
300
+ debug: bool = False) -> torch.Tensor:
301
+ """
302
+ Forward pass with optional streaming support via cache.
303
+
304
+ Args:
305
+ x: Input tensor [batch_size, channels, time]
306
+ cache: VibeVoiceTokenizerStreamingCache object for maintaining states
307
+ sample_indices: Indices identifying each sample for cache management
308
+ use_cache: Whether to use cached states for streaming
309
+ debug: Whether to print debug information
310
+
311
+ Returns:
312
+ Output tensor
313
+ """
314
+ B, C, T = x.shape
315
+
316
+ # Non-streaming mode
317
+ if not use_cache or cache is None:
318
+ return self._forward_non_streaming(x, debug=debug)
319
+
320
+ # Streaming mode
321
+ assert self.causal, "Streaming mode is only supported for causal convolutions"
322
+ assert sample_indices is not None, "sample_indices must be provided for streaming mode"
323
+ assert len(sample_indices) == B, "sample_indices must match batch size"
324
+
325
+ return self._forward_streaming(x, cache, sample_indices, debug)
326
+
327
+ def _forward_streaming(self, x: torch.Tensor,
328
+ cache: VibeVoiceTokenizerStreamingCache,
329
+ sample_indices: torch.Tensor,
330
+ debug: bool = False) -> torch.Tensor:
331
+ """Streaming forward pass with cache operations kept separate from compiled code"""
332
+ B, C, T = x.shape
333
+
334
+ # Cache operations (not compiled)
335
+ cached_states = cache.get(self.layer_id, sample_indices)
336
+
337
+ if cached_states is None:
338
+ # First chunk - initialize with zeros for context
339
+ if self.context_size > 0:
340
+ cached_states = torch.zeros(B, C, self.context_size, device=x.device, dtype=x.dtype)
341
+ if debug:
342
+ print(f"[DEBUG] Initialized cache with shape: {cached_states.shape}, context_size={self.context_size}")
343
+ else:
344
+ cached_states = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
345
+ if debug:
346
+ print(f"[DEBUG] No context needed (kernel_size=stride)")
347
+
348
+ # Concatenate cached states with input
349
+ if cached_states.shape[2] > 0:
350
+ input_with_context = torch.cat([cached_states, x], dim=2)
351
+ else:
352
+ input_with_context = x
353
+
354
+ if debug:
355
+ print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_states.shape}, Combined: {input_with_context.shape}")
356
+
357
+ # Apply convolution directly - no extra padding in streaming mode
358
+ # The conv layer will handle its own padding internally
359
+ output = self.conv(input_with_context)
360
+
361
+ if debug:
362
+ print(f"[DEBUG] Output shape: {output.shape}")
363
+
364
+ # Update cache for next chunk
365
+ if self.context_size > 0:
366
+ # Calculate how many samples to keep
367
+ total_input_length = input_with_context.shape[2]
368
+
369
+ # Keep the last context_size samples
370
+ if total_input_length >= self.context_size:
371
+ new_cache_start = total_input_length - self.context_size
372
+ new_cache = input_with_context[:, :, new_cache_start:]
373
+ else:
374
+ # If we have less than context_size samples, keep everything
375
+ new_cache = input_with_context
376
+
377
+ if debug:
378
+ print(f"[DEBUG] New cache shape: {new_cache.shape}")
379
+
380
+ cache.set(self.layer_id, sample_indices, new_cache)
381
+
382
+ return output
383
+
384
+ def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
385
+ """Standard forward pass without streaming"""
386
+ B, C, T = x.shape
387
+ kernel_size = self.kernel_size
388
+ stride = self.stride
389
+ dilation = self.dilation
390
+ padding_total = self.padding_total
391
+
392
+ # Compute extra padding for stride alignment
393
+ extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
394
+
395
+ if debug:
396
+ print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}, padding_total={padding_total}, extra_padding={extra_padding}")
397
+
398
+ if self.causal:
399
+ # Left padding for causal
400
+ if self.pad_mode == 'constant':
401
+ x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode, value=0)
402
+ else:
403
+ x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
404
+ else:
405
+ # Symmetric padding for non-causal
406
+ padding_right = padding_total // 2
407
+ padding_left = padding_total - padding_right
408
+ x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
409
+
410
+ if debug:
411
+ print(f"[DEBUG NON-STREAMING] After padding: {x.shape}")
412
+
413
+ output = self.conv(x)
414
+
415
+ if debug:
416
+ print(f"[DEBUG NON-STREAMING] Output shape: {output.shape}")
417
+
418
+ return output
419
+
420
+
421
+ class SConvTranspose1d(nn.Module):
422
+ """ConvTranspose1d with built-in handling of asymmetric or causal padding and normalization."""
423
+ def __init__(self, in_channels: int, out_channels: int,
424
+ kernel_size: int, stride: int = 1, causal: bool = False,
425
+ norm: str = 'none', trim_right_ratio: float = 1.,
426
+ norm_kwargs: tp.Dict[str, tp.Any] = {}, bias: bool = True):
427
+ super().__init__()
428
+ self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
429
+ causal=causal, norm=norm, norm_kwargs=norm_kwargs, bias=bias)
430
+ self.causal = causal
431
+ self.trim_right_ratio = trim_right_ratio
432
+ assert self.causal or self.trim_right_ratio == 1., \
433
+ "`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
434
+ assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
435
+
436
+ # Store configuration
437
+ self.kernel_size = kernel_size
438
+ self.stride = stride
439
+ self.in_channels = in_channels
440
+ self.out_channels = out_channels
441
+
442
+ # For transposed convolution, padding calculation is different
443
+ self.padding_total = kernel_size - stride
444
+
445
+ # For streaming, we need to keep track of input history
446
+ # Transposed conv needs to see multiple input samples to produce correct output
447
+ self.context_size = kernel_size - 1
448
+
449
+ # Create a unique layer ID for cache management
450
+ self._layer_id = None
451
+
452
+ @property
453
+ def layer_id(self):
454
+ if self._layer_id is None:
455
+ self._layer_id = f"sconvtr1d_{id(self)}"
456
+ return self._layer_id
457
+
458
+ def forward(self, x: torch.Tensor,
459
+ cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
460
+ sample_indices: Optional[torch.Tensor] = None,
461
+ use_cache: bool = False,
462
+ debug: bool = False) -> torch.Tensor:
463
+ """
464
+ Forward pass with optional streaming support via cache.
465
+ """
466
+ B, C, T = x.shape
467
+
468
+ # Non-streaming mode
469
+ if not use_cache or cache is None:
470
+ return self._forward_non_streaming(x, debug=debug)
471
+
472
+ # Streaming mode
473
+ assert sample_indices is not None, "sample_indices must be provided for streaming mode"
474
+ assert len(sample_indices) == B, "sample_indices must match batch size"
475
+
476
+ return self._forward_streaming(x, cache, sample_indices, debug)
477
+
478
+ def _forward_streaming(self, x: torch.Tensor,
479
+ cache: VibeVoiceTokenizerStreamingCache,
480
+ sample_indices: torch.Tensor,
481
+ debug: bool = False) -> torch.Tensor:
482
+ """Streaming forward pass with cache operations kept separate from compiled code"""
483
+ B, C, T = x.shape
484
+
485
+ # Cache operations (not compiled)
486
+ cached_input = cache.get(self.layer_id, sample_indices)
487
+
488
+ if cached_input is None:
489
+ # First chunk - no history yet
490
+ cached_input = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
491
+ if debug:
492
+ print(f"[DEBUG] Initialized empty cache for transposed conv")
493
+
494
+ # Concatenate cached input with new input
495
+ full_input = torch.cat([cached_input, x], dim=2)
496
+
497
+ if debug:
498
+ print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_input.shape}, Combined: {full_input.shape}")
499
+
500
+ # First chunk or debug mode - use uncompiled version
501
+ full_output = self.convtr(full_input)
502
+
503
+ if debug:
504
+ print(f"[DEBUG] Full transposed conv output shape: {full_output.shape}")
505
+
506
+ # Calculate padding to remove
507
+ if self.causal:
508
+ padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
509
+ padding_left = self.padding_total - padding_right
510
+ else:
511
+ padding_right = self.padding_total // 2
512
+ padding_left = self.padding_total - padding_right
513
+
514
+ # Remove padding
515
+ if padding_left + padding_right > 0:
516
+ full_output = unpad1d(full_output, (padding_left, padding_right))
517
+
518
+ if debug:
519
+ print(f"[DEBUG] After unpadding: {full_output.shape}")
520
+
521
+ # Determine which part of the output corresponds to the new input
522
+ if cached_input.shape[2] == 0:
523
+ # First chunk - return all output
524
+ output = full_output
525
+ else:
526
+ # Subsequent chunks - return only the new output
527
+ expected_new_output = T * self.stride
528
+
529
+ # Take the last expected_new_output samples
530
+ if full_output.shape[2] >= expected_new_output:
531
+ output = full_output[:, :, -expected_new_output:]
532
+ else:
533
+ output = full_output
534
+
535
+ if debug:
536
+ print(f"[DEBUG] Final streaming output shape: {output.shape}")
537
+
538
+ # Update cache
539
+ if full_input.shape[2] > self.context_size:
540
+ new_cache = full_input[:, :, -self.context_size:]
541
+ else:
542
+ new_cache = full_input
543
+
544
+ if debug:
545
+ print(f"[DEBUG] New cache shape: {new_cache.shape}")
546
+
547
+ cache.set(self.layer_id, sample_indices, new_cache)
548
+
549
+ return output
550
+
551
+ def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
552
+ """Standard forward pass without streaming"""
553
+ if debug:
554
+ print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}")
555
+
556
+ # Apply transposed convolution
557
+ y = self.convtr(x)
558
+
559
+ if debug:
560
+ print(f"[DEBUG NON-STREAMING] After transposed conv: {y.shape}")
561
+
562
+ # Calculate and remove padding
563
+ if self.causal:
564
+ padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
565
+ padding_left = self.padding_total - padding_right
566
+ else:
567
+ padding_right = self.padding_total // 2
568
+ padding_left = self.padding_total - padding_right
569
+
570
+ if padding_left + padding_right > 0:
571
+ y = unpad1d(y, (padding_left, padding_right))
572
+
573
+ if debug:
574
+ print(f"[DEBUG NON-STREAMING] Final output shape: {y.shape}")
575
+
576
+ return y
577
+
578
+ # FFN
579
+ class FFN(nn.Module):
580
+ def __init__(
581
+ self,
582
+ embed_dim,
583
+ ffn_dim,
584
+ bias=False,
585
+ ):
586
+ super().__init__()
587
+ self.embed_dim = embed_dim
588
+ self.linear1 = nn.Linear(self.embed_dim, ffn_dim, bias=bias)
589
+ self.gelu = ACT2FN["gelu"]
590
+ self.linear2 = nn.Linear(ffn_dim, self.embed_dim, bias=bias)
591
+
592
+ def forward(self, x):
593
+ x = self.linear1(x)
594
+ x = self.gelu(x)
595
+ x = self.linear2(x)
596
+ return x
597
+
598
+
599
+ class Convlayer(nn.Module):
600
+ def __init__(
601
+ self,
602
+ in_channels,
603
+ out_channels,
604
+ kernel_size,
605
+ stride=1,
606
+ dilation=1,
607
+ groups=1,
608
+ bias=True,
609
+ pad_mode='zeros',
610
+ norm='weight_norm',
611
+ causal=True,
612
+ ):
613
+ super().__init__()
614
+ self.conv = SConv1d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation,
615
+ groups=groups, bias=bias, pad_mode=pad_mode, norm=norm, causal=causal)
616
+
617
+ def forward(self, x):
618
+ return self.conv(x)
619
+
620
+ class Block1D(nn.Module):
621
+ def __init__(self, dim, kernel_size=7, drop_path=0., mixer_layer='conv',
622
+ layer_scale_init_value=1e-6, **kwargs):
623
+ super().__init__()
624
+
625
+ if kwargs.get('layernorm', 'LN') == 'LN':
626
+ self.norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
627
+ self.ffn_norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
628
+ elif kwargs.get('layernorm', 'RMSNorm') == 'RMSNorm':
629
+ self.norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
630
+ self.ffn_norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
631
+
632
+ if mixer_layer == 'conv':
633
+ self.mixer = Convlayer(dim, dim, groups=kwargs.get('groups', 1),
634
+ kernel_size=kernel_size,
635
+ pad_mode=kwargs.get('pad_mode', 'reflect'),
636
+ norm=kwargs.get('norm', 'none'),
637
+ causal=kwargs.get('causal', True),
638
+ bias=kwargs.get('bias', True),
639
+ )
640
+ elif mixer_layer == 'depthwise_conv':
641
+ self.mixer = Convlayer(dim, dim, groups=dim,
642
+ kernel_size=kernel_size,
643
+ pad_mode=kwargs.get('pad_mode', 'reflect'),
644
+ norm=kwargs.get('norm', 'none'),
645
+ causal=kwargs.get('causal', True),
646
+ bias=kwargs.get('bias', True),
647
+ )
648
+ else:
649
+ raise ValueError(f"Unsupported mixer layer: {mixer_layer}")
650
+
651
+ self.ffn = FFN(
652
+ dim,
653
+ kwargs.get('ffn_expansion', 4) * dim,
654
+ bias=kwargs.get('bias', False),
655
+ )
656
+ self.drop_path = nn.Identity() if drop_path <= 0. else nn.modules.DropPath(drop_path)
657
+
658
+ if layer_scale_init_value > 0:
659
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
660
+ self.ffn_gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
661
+ else:
662
+ self.gamma = None
663
+ self.ffn_gamma = None
664
+
665
+ def forward(self, x):
666
+ # mixer
667
+ residual = x
668
+ x = self.norm(x)
669
+ x = self.mixer(x)
670
+ if self.gamma is not None:
671
+ x = x * self.gamma.unsqueeze(-1)
672
+ x = residual + self.drop_path(x)
673
+
674
+ # ffn
675
+ residual = x
676
+ x = self.ffn_norm(x)
677
+ x = x.permute(0, 2, 1)
678
+ x = self.ffn(x)
679
+ x = x.permute(0, 2, 1)
680
+ if self.ffn_gamma is not None:
681
+ x = x * self.ffn_gamma.unsqueeze(-1)
682
+ x = residual + self.drop_path(x)
683
+
684
+ return x
685
+
686
+
687
+ class TokenizerEncoder(nn.Module):
688
+ """
689
+ Encoder component for the VibeVoice tokenizer that converts audio to latent representations.
690
+
691
+ Args:
692
+ config: Configuration object with model parameters
693
+ """
694
+ def __init__(self, config):
695
+ super().__init__()
696
+
697
+ # Extract parameters from config
698
+ self.channels = config.channels
699
+ self.dimension = config.dimension
700
+ self.n_filters = config.n_filters
701
+ self.ratios = list(reversed(config.ratios))
702
+ self.depths = config.depths
703
+ self.n_residual_layers = getattr(config, "n_residual_layers", 1)
704
+ self.hop_length = np.prod(self.ratios)
705
+ self.causal = config.causal
706
+
707
+ # Additional config parameters with defaults
708
+ kernel_size = getattr(config, "kernel_size", 7)
709
+ last_kernel_size = getattr(config, "last_kernel_size", 7)
710
+ norm = getattr(config, "norm", "none")
711
+ norm_params = getattr(config, "norm_params", {})
712
+ pad_mode = getattr(config, "pad_mode", "reflect")
713
+ bias = getattr(config, "bias", True)
714
+ layernorm = getattr(config, "layernorm", "LN")
715
+ layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
716
+ layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
717
+ drop_path_rate = getattr(config, "drop_path_rate", 0.0)
718
+ mixer_layer = getattr(config, "mixer_layer", "conv")
719
+ layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
720
+ disable_last_norm = getattr(config, "disable_last_norm", False)
721
+
722
+ # determine the norm type based on layernorm
723
+ if layernorm == 'LN':
724
+ norm_type = ConvLayerNorm
725
+ elif layernorm == 'RMSNorm':
726
+ norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
727
+ else:
728
+ raise ValueError(f"Unsupported norm type: {layernorm}")
729
+
730
+ # stem and intermediate downsampling conv layers
731
+ stem = nn.Sequential(
732
+ SConv1d(self.channels, self.n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
733
+ )
734
+
735
+ self.downsample_layers = nn.ModuleList()
736
+ self.downsample_layers.append(stem)
737
+ for i in range(len(self.ratios)):
738
+ in_ch = self.n_filters * (2 ** i)
739
+ out_ch = self.n_filters * (2 ** (i + 1))
740
+ downsample_layer = nn.Sequential(
741
+ SConv1d(in_ch, out_ch, kernel_size=self.ratios[i] * 2, stride=self.ratios[i], causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
742
+ )
743
+ self.downsample_layers.append(downsample_layer)
744
+
745
+ # configure the transformer blocks
746
+ layer_type = partial(
747
+ Block1D,
748
+ mixer_layer=mixer_layer,
749
+ layernorm=layernorm,
750
+ eps=layernorm_eps,
751
+ causal=self.causal,
752
+ pad_mode=pad_mode,
753
+ norm=norm,
754
+ bias=bias,
755
+ layer_scale_init_value=layer_scale_init_value,
756
+ )
757
+
758
+ self.stages = nn.ModuleList()
759
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
760
+ cur = 0
761
+
762
+ for i in range(len(self.depths)):
763
+ in_ch = self.n_filters * (2 ** i)
764
+ stage = nn.Sequential(
765
+ *[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
766
+ )
767
+ self.stages.append(stage)
768
+ cur += self.depths[i]
769
+
770
+ if not disable_last_norm:
771
+ self.norm = norm_type(in_ch, eps=layernorm_eps)
772
+ else:
773
+ self.norm = nn.Identity()
774
+ self.head = SConv1d(in_ch, self.dimension, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
775
+
776
+ def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
777
+ for i in range(len(self.depths)):
778
+ # Apply downsampling
779
+ for layer in self.downsample_layers[i]:
780
+ if isinstance(layer, SConv1d):
781
+ x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
782
+ else:
783
+ x = layer(x)
784
+
785
+ # Apply stage (Block1D contains Convlayer which contains SConv1d)
786
+ for block in self.stages[i]:
787
+ if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
788
+ # Block1D forward with cache support
789
+ residual = x
790
+ x = block.norm(x)
791
+ x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
792
+ if block.gamma is not None:
793
+ x = x * block.gamma.unsqueeze(-1)
794
+ x = residual + x
795
+
796
+ # FFN part
797
+ residual = x
798
+ x = block.ffn_norm(x)
799
+ x = x.permute(0, 2, 1)
800
+ x = block.ffn(x)
801
+ x = x.permute(0, 2, 1)
802
+ if block.ffn_gamma is not None:
803
+ x = x * block.ffn_gamma.unsqueeze(-1)
804
+ x = residual + x
805
+ else:
806
+ x = block(x)
807
+
808
+ return self.norm(x)
809
+
810
+ def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
811
+ x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
812
+ x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
813
+ return x
814
+
815
+
816
+ class TokenizerDecoder(nn.Module):
817
+ """
818
+ Decoder component for the VibeVoice tokenizer that converts latent representations back to audio.
819
+
820
+ Args:
821
+ config: Configuration object with model parameters
822
+ """
823
+ def __init__(self, config):
824
+ super().__init__()
825
+
826
+ # Extract parameters from config
827
+ self.dimension = config.dimension
828
+ self.channels = config.channels
829
+ self.n_filters = config.n_filters
830
+ self.ratios = config.ratios
831
+
832
+ # IMPORTANT CHANGE: Don't reverse depths again since they're already reversed in VibeVoiceAcousticTokenizerModel
833
+ self.depths = config.depths # Changed from list(reversed(config.depths))
834
+
835
+ self.n_residual_layers = getattr(config, "n_residual_layers", 1)
836
+ self.hop_length = np.prod(self.ratios)
837
+ self.causal = config.causal
838
+
839
+ # Additional config parameters with defaults
840
+ kernel_size = getattr(config, "kernel_size", 7)
841
+ last_kernel_size = getattr(config, "last_kernel_size", 7)
842
+ norm = getattr(config, "norm", "none")
843
+ norm_params = getattr(config, "norm_params", {})
844
+ pad_mode = getattr(config, "pad_mode", "reflect")
845
+ bias = getattr(config, "bias", True)
846
+ layernorm = getattr(config, "layernorm", "LN")
847
+ layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
848
+ trim_right_ratio = getattr(config, "trim_right_ratio", 1.0)
849
+ layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
850
+ drop_path_rate = getattr(config, "drop_path_rate", 0.0)
851
+ mixer_layer = getattr(config, "mixer_layer", "conv")
852
+ layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
853
+ disable_last_norm = getattr(config, "disable_last_norm", False)
854
+
855
+ # determine the norm type based on layernorm
856
+ if layernorm == 'LN':
857
+ norm_type = ConvLayerNorm
858
+ elif layernorm == 'RMSNorm':
859
+ norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
860
+ else:
861
+ raise ValueError(f"Unsupported norm type: {layernorm}")
862
+
863
+ # stem and upsampling layers
864
+ stem = nn.Sequential(
865
+ SConv1d(self.dimension, self.n_filters * 2 ** (len(self.depths) - 1), kernel_size, norm=norm,
866
+ norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
867
+ )
868
+
869
+ self.upsample_layers = nn.ModuleList()
870
+ self.upsample_layers.append(stem)
871
+ for i in range(len(self.ratios)):
872
+ in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
873
+ out_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i - 1))
874
+ upsample_layer = nn.Sequential(
875
+ SConvTranspose1d(in_ch, out_ch,
876
+ kernel_size=self.ratios[i] * 2, stride=self.ratios[i],
877
+ norm=norm, norm_kwargs=norm_params, bias=bias,
878
+ causal=self.causal, trim_right_ratio=trim_right_ratio),
879
+ )
880
+ self.upsample_layers.append(upsample_layer)
881
+
882
+ # configure transformer blocks
883
+ layer_type = partial(
884
+ Block1D,
885
+ mixer_layer=mixer_layer,
886
+ layernorm=layernorm,
887
+ eps=layernorm_eps,
888
+ causal=self.causal,
889
+ pad_mode=pad_mode,
890
+ norm=norm,
891
+ bias=bias,
892
+ layer_scale_init_value=layer_scale_init_value,
893
+ )
894
+
895
+ self.stages = nn.ModuleList()
896
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
897
+ cur = 0
898
+
899
+ # Create stages in the same order as the original model
900
+ for i in range(len(self.depths)):
901
+ in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
902
+ stage = nn.Sequential(
903
+ *[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
904
+ )
905
+ self.stages.append(stage)
906
+ cur += self.depths[i]
907
+
908
+ if not disable_last_norm:
909
+ self.norm = norm_type(in_ch, eps=layernorm_eps)
910
+ else:
911
+ self.norm = nn.Identity()
912
+ self.head = SConv1d(in_ch, self.channels, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
913
+
914
+ def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
915
+ for i in range(len(self.depths)):
916
+ # Apply upsampling
917
+ for layer in self.upsample_layers[i]:
918
+ if isinstance(layer, (SConv1d, SConvTranspose1d)):
919
+ x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
920
+ else:
921
+ x = layer(x)
922
+
923
+ # Apply stage (Block1D contains Convlayer which contains SConv1d)
924
+ for block in self.stages[i]:
925
+ if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
926
+ # Block1D forward with cache support
927
+ residual = x
928
+ x = block.norm(x)
929
+ x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
930
+ if block.gamma is not None:
931
+ x = x * block.gamma.unsqueeze(-1)
932
+ x = residual + x
933
+
934
+ # FFN part
935
+ residual = x
936
+ x = block.ffn_norm(x)
937
+ x = x.permute(0, 2, 1)
938
+ x = block.ffn(x)
939
+ x = x.permute(0, 2, 1)
940
+ if block.ffn_gamma is not None:
941
+ x = x * block.ffn_gamma.unsqueeze(-1)
942
+ x = residual + x
943
+ else:
944
+ x = block(x)
945
+
946
+ return self.norm(x)
947
+
948
+ def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
949
+ x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
950
+ x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
951
+ return x
952
+
953
+
954
+ @dataclass
955
+ class VibeVoiceTokenizerEncoderOutput:
956
+ """
957
+ Output of VibeVoice tokenizer encoder, representing a Gaussian distribution with fixed variance.
958
+
959
+ Args:
960
+ mean (`torch.FloatTensor`): The mean parameters of the distribution.
961
+ std (`float` or `torch.FloatTensor`): Fixed standard deviation value.
962
+ """
963
+ mean: torch.Tensor
964
+ std: Optional[Union[float, torch.Tensor]] = None
965
+
966
+ def sample(self, dist_type='fix'):
967
+ """
968
+ Sample from the distribution.
969
+
970
+ Args:
971
+ dist_type (`str`): Sampling method, either 'fix' or 'gaussian'.
972
+
973
+ Returns:
974
+ `torch.FloatTensor`: Sampled values.
975
+ `torch.FloatTensor` (optional): Standard deviation used (only when dist_type='gaussian').
976
+ """
977
+ if dist_type == 'fix':
978
+ x = self.mean + self.std * torch.randn_like(self.mean)
979
+ return x, self.std
980
+ elif dist_type == 'gaussian':
981
+ batch_size = self.mean.size(0)
982
+ value = self.std / 0.8
983
+ std = torch.randn(batch_size, device=self.mean.device, dtype=self.mean.dtype) * value
984
+
985
+ while std.dim() < self.mean.dim():
986
+ std = std.unsqueeze(-1)
987
+
988
+ x = self.mean + std * torch.randn_like(self.mean)
989
+ return x, std
990
+ else:
991
+ return self.mean, self.std
992
+
993
+ def kl(self):
994
+ """Compute KL divergence between this distribution and a standard normal."""
995
+ target = torch.zeros_like(self.mean)
996
+ return F.mse_loss(self.mean, target, reduction='none')
997
+
998
+ def mode(self):
999
+ """Return the distribution mode (which is the mean for Gaussian)."""
1000
+ return self.mean
1001
+
1002
+ class VibeVoiceAcousticTokenizerModel(PreTrainedModel):
1003
+ """VibeVoice speech tokenizer model combining encoder and decoder for acoustic tokens"""
1004
+
1005
+ config_class = VibeVoiceAcousticTokenizerConfig
1006
+ base_model_prefix = "vibevoice_acoustic_tokenizer"
1007
+ _supports_flash_attn_2 = True
1008
+ _supports_sdpa = True
1009
+ _no_split_modules = ["TokenizerEncoder", "TokenizerDecoder"]
1010
+
1011
+ def __init__(self, config):
1012
+ super().__init__(config)
1013
+
1014
+ self.register_buffer('fix_std', torch.tensor(config.fix_std), persistent=False)
1015
+ self.std_dist_type = getattr(config, "std_dist_type", "fix")
1016
+
1017
+ # Parse encoder depths
1018
+ if isinstance(config.encoder_depths, str):
1019
+ encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
1020
+ else:
1021
+ encoder_depths = config.encoder_depths
1022
+
1023
+ # Parse decoder depths if provided
1024
+ if config.decoder_depths is not None and isinstance(config.decoder_depths, str):
1025
+ decoder_depths = [int(d) for d in config.decoder_depths.split('-')]
1026
+ else:
1027
+ # Default: use reversed encoder depths if decoder_depths is None
1028
+ decoder_depths = list(reversed(encoder_depths))
1029
+
1030
+ # Create encoder config
1031
+ encoder_config = copy.deepcopy(config)
1032
+ encoder_config.dimension = config.vae_dim
1033
+ encoder_config.n_filters = config.encoder_n_filters
1034
+ encoder_config.ratios = config.encoder_ratios
1035
+ encoder_config.depths = encoder_depths
1036
+ encoder_config.norm = config.conv_norm
1037
+ encoder_config.pad_mode = config.pad_mode
1038
+ encoder_config.bias = config.conv_bias
1039
+ encoder_config.layernorm_eps = config.layernorm_eps
1040
+ encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
1041
+ encoder_config.mixer_layer = config.mixer_layer
1042
+ encoder_config.layer_scale_init_value = config.layer_scale_init_value
1043
+ encoder_config.disable_last_norm = config.disable_last_norm
1044
+
1045
+ # Create decoder config
1046
+ decoder_config = copy.deepcopy(config)
1047
+ decoder_config.dimension = config.vae_dim
1048
+ decoder_config.n_filters = config.decoder_n_filters
1049
+ decoder_config.ratios = config.decoder_ratios
1050
+ decoder_config.depths = decoder_depths
1051
+ decoder_config.norm = config.conv_norm
1052
+ decoder_config.pad_mode = config.pad_mode
1053
+ decoder_config.bias = config.conv_bias
1054
+ decoder_config.layernorm_eps = config.layernorm_eps
1055
+ decoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
1056
+ decoder_config.mixer_layer = config.mixer_layer
1057
+ decoder_config.layer_scale_init_value = config.layer_scale_init_value
1058
+ decoder_config.disable_last_norm = config.disable_last_norm
1059
+
1060
+ # Initialize encoder and decoder
1061
+ self.encoder = TokenizerEncoder(encoder_config)
1062
+ self.decoder = TokenizerDecoder(decoder_config)
1063
+
1064
+ # Initialize weights
1065
+ self.apply(self._init_weights)
1066
+
1067
+ def _init_weights(self, module):
1068
+ """Initialize weights for the model"""
1069
+ if isinstance(module, nn.Linear):
1070
+ nn.init.normal_(module.weight, std=self.config.weight_init_value)
1071
+ if module.bias is not None:
1072
+ nn.init.zeros_(module.bias)
1073
+ elif isinstance(module, nn.LayerNorm):
1074
+ nn.init.ones_(module.weight)
1075
+ nn.init.zeros_(module.bias)
1076
+ elif isinstance(module, nn.Conv1d):
1077
+ nn.init.normal_(module.weight, std=self.config.weight_init_value)
1078
+ if module.bias is not None:
1079
+ nn.init.zeros_(module.bias)
1080
+
1081
+ @torch.no_grad()
1082
+ def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1083
+ """Convert audio to latent representations"""
1084
+ latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1085
+ return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1), std=self.fix_std)
1086
+
1087
+ @torch.no_grad()
1088
+ def sampling(self, encoder_output, dist_type=None):
1089
+ """Sample from the encoder output distribution"""
1090
+ dist_type = dist_type or self.std_dist_type
1091
+
1092
+ if dist_type == 'fix':
1093
+ return encoder_output.sample(dist_type='fix')
1094
+ elif dist_type == 'gaussian':
1095
+ return encoder_output.sample(dist_type='gaussian')
1096
+ else:
1097
+ raise ValueError(f"Unsupported dist_type: {dist_type}, expected 'fix' or 'gaussian'")
1098
+
1099
+ @torch.no_grad()
1100
+ def decode(self, latents, cache=None, sample_indices=None, use_cache=False, debug=False):
1101
+ """Convert latent representations back to audio"""
1102
+ if latents.shape[1] == self.config.vae_dim:
1103
+ pass
1104
+ else:
1105
+ latents = latents.permute(0, 2, 1)
1106
+
1107
+ audio = self.decoder(latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1108
+ return audio
1109
+
1110
+ def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1111
+ """Full forward pass: encode audio to latents, then decode back to audio"""
1112
+ encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1113
+ sampled_latents, _ = self.sampling(encoder_output)
1114
+ reconstructed = self.decode(sampled_latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1115
+ return reconstructed, sampled_latents
1116
+
1117
+
1118
+ class VibeVoiceSemanticTokenizerModel(PreTrainedModel):
1119
+ """VibeVoice speech tokenizer model with only encoder for semantic tokens"""
1120
+
1121
+ config_class = VibeVoiceSemanticTokenizerConfig
1122
+ base_model_prefix = "vibevoice_semantic_tokenizer"
1123
+ _supports_flash_attn_2 = True
1124
+ _supports_sdpa = True
1125
+ _no_split_modules = ["TokenizerEncoder"]
1126
+
1127
+ def __init__(self, config):
1128
+ super().__init__(config)
1129
+
1130
+ # Parse encoder depths
1131
+ if isinstance(config.encoder_depths, str):
1132
+ encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
1133
+ else:
1134
+ encoder_depths = config.encoder_depths
1135
+
1136
+ # Create encoder config
1137
+ encoder_config = copy.deepcopy(config)
1138
+ encoder_config.dimension = config.vae_dim
1139
+ encoder_config.n_filters = config.encoder_n_filters
1140
+ encoder_config.ratios = config.encoder_ratios
1141
+ encoder_config.depths = encoder_depths
1142
+ encoder_config.norm = config.conv_norm
1143
+ encoder_config.pad_mode = config.pad_mode
1144
+ encoder_config.bias = config.conv_bias
1145
+ encoder_config.layernorm_eps = config.layernorm_eps
1146
+ encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
1147
+ encoder_config.mixer_layer = config.mixer_layer
1148
+ encoder_config.layer_scale_init_value = config.layer_scale_init_value
1149
+ encoder_config.disable_last_norm = config.disable_last_norm
1150
+
1151
+ # Initialize encoder and decoder
1152
+ self.encoder = TokenizerEncoder(encoder_config)
1153
+
1154
+ # Initialize weights
1155
+ self.apply(self._init_weights)
1156
+
1157
+ def _init_weights(self, module):
1158
+ """Initialize weights for the model"""
1159
+ if isinstance(module, nn.Linear):
1160
+ nn.init.normal_(module.weight, std=self.config.weight_init_value)
1161
+ if module.bias is not None:
1162
+ nn.init.zeros_(module.bias)
1163
+ elif isinstance(module, nn.LayerNorm):
1164
+ nn.init.ones_(module.weight)
1165
+ nn.init.zeros_(module.bias)
1166
+ elif isinstance(module, nn.Conv1d):
1167
+ nn.init.normal_(module.weight, std=self.config.weight_init_value)
1168
+ if module.bias is not None:
1169
+ nn.init.zeros_(module.bias)
1170
+
1171
+ @torch.no_grad()
1172
+ def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1173
+ """Convert audio to latent representations"""
1174
+ latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1175
+ return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1))
1176
+
1177
+ @torch.no_grad()
1178
+ def sampling(self, encoder_output, dist_type=None):
1179
+ """Sample from the encoder output distribution"""
1180
+ return encoder_output.sample(dist_type='none')
1181
+
1182
+ def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
1183
+ """Full forward pass: encode audio to latents, then decode back to audio"""
1184
+ encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
1185
+ sampled_latents, _ = self.sampling(encoder_output, dist_type='none')
1186
+ return None, sampled_latents
1187
+
1188
+ AutoModel.register(VibeVoiceAcousticTokenizerConfig, VibeVoiceAcousticTokenizerModel)
1189
+ AutoModel.register(VibeVoiceSemanticTokenizerConfig, VibeVoiceSemanticTokenizerModel)
1190
+
1191
+ __all__ = [
1192
+ "VibeVoiceTokenizerStreamingCache",
1193
+ "VibeVoiceAcousticTokenizerModel",
1194
+ "VibeVoiceSemanticTokenizerModel",
1195
+ ]
modular/streamer.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import torch
4
+
5
+ import asyncio
6
+ from queue import Queue
7
+ from typing import TYPE_CHECKING, Optional
8
+
9
+
10
+ from transformers.generation import BaseStreamer
11
+
12
+
13
+ class AudioStreamer(BaseStreamer):
14
+ """
15
+ Audio streamer that stores audio chunks in queues for each sample in the batch.
16
+ This allows streaming audio generation for multiple samples simultaneously.
17
+
18
+ Parameters:
19
+ batch_size (`int`):
20
+ The batch size for generation
21
+ stop_signal (`any`, *optional*):
22
+ The signal to put in the queue when generation ends. Defaults to None.
23
+ timeout (`float`, *optional*):
24
+ The timeout for the audio queue. If `None`, the queue will block indefinitely.
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ batch_size: int,
30
+ stop_signal: Optional[any] = None,
31
+ timeout: Optional[float] = None,
32
+ ):
33
+ self.batch_size = batch_size
34
+ self.stop_signal = stop_signal
35
+ self.timeout = timeout
36
+
37
+ # Create a queue for each sample in the batch
38
+ self.audio_queues = [Queue() for _ in range(batch_size)]
39
+ self.finished_flags = [False for _ in range(batch_size)]
40
+ self.sample_indices_map = {} # Maps from sample index to queue index
41
+
42
+ def put(self, audio_chunks: torch.Tensor, sample_indices: torch.Tensor):
43
+ """
44
+ Receives audio chunks and puts them in the appropriate queues.
45
+
46
+ Args:
47
+ audio_chunks: Tensor of shape (num_samples, ...) containing audio chunks
48
+ sample_indices: Tensor indicating which samples these chunks belong to
49
+ """
50
+ for i, sample_idx in enumerate(sample_indices):
51
+ idx = sample_idx.item()
52
+ if idx < self.batch_size and not self.finished_flags[idx]:
53
+ # Convert to numpy or keep as tensor based on preference
54
+ audio_chunk = audio_chunks[i].detach().cpu()
55
+ self.audio_queues[idx].put(audio_chunk, timeout=self.timeout)
56
+
57
+ def end(self, sample_indices: Optional[torch.Tensor] = None):
58
+ """
59
+ Signals the end of generation for specified samples or all samples.
60
+
61
+ Args:
62
+ sample_indices: Optional tensor of sample indices to end. If None, ends all.
63
+ """
64
+ if sample_indices is None:
65
+ # End all samples
66
+ for idx in range(self.batch_size):
67
+ if not self.finished_flags[idx]:
68
+ self.audio_queues[idx].put(self.stop_signal, timeout=self.timeout)
69
+ self.finished_flags[idx] = True
70
+ else:
71
+ # End specific samples
72
+ for sample_idx in sample_indices:
73
+ idx = sample_idx.item() if torch.is_tensor(sample_idx) else sample_idx
74
+ if idx < self.batch_size and not self.finished_flags[idx]:
75
+ self.audio_queues[idx].put(self.stop_signal, timeout=self.timeout)
76
+ self.finished_flags[idx] = True
77
+
78
+ def __iter__(self):
79
+ """Returns an iterator over the batch of audio streams."""
80
+ return AudioBatchIterator(self)
81
+
82
+ def get_stream(self, sample_idx: int):
83
+ """Get the audio stream for a specific sample."""
84
+ if sample_idx >= self.batch_size:
85
+ raise ValueError(f"Sample index {sample_idx} exceeds batch size {self.batch_size}")
86
+ return AudioSampleIterator(self, sample_idx)
87
+
88
+
89
+ class AudioSampleIterator:
90
+ """Iterator for a single audio stream from the batch."""
91
+
92
+ def __init__(self, streamer: AudioStreamer, sample_idx: int):
93
+ self.streamer = streamer
94
+ self.sample_idx = sample_idx
95
+
96
+ def __iter__(self):
97
+ return self
98
+
99
+ def __next__(self):
100
+ value = self.streamer.audio_queues[self.sample_idx].get(timeout=self.streamer.timeout)
101
+ if value == self.streamer.stop_signal:
102
+ raise StopIteration()
103
+ return value
104
+
105
+
106
+ class AudioBatchIterator:
107
+ """Iterator that yields audio chunks for all samples in the batch."""
108
+
109
+ def __init__(self, streamer: AudioStreamer):
110
+ self.streamer = streamer
111
+ self.active_samples = set(range(streamer.batch_size))
112
+
113
+ def __iter__(self):
114
+ return self
115
+
116
+ def __next__(self):
117
+ if not self.active_samples:
118
+ raise StopIteration()
119
+
120
+ batch_chunks = {}
121
+ samples_to_remove = set()
122
+
123
+ # Try to get chunks from all active samples
124
+ for idx in self.active_samples:
125
+ try:
126
+ value = self.streamer.audio_queues[idx].get(block=False)
127
+ if value == self.streamer.stop_signal:
128
+ samples_to_remove.add(idx)
129
+ else:
130
+ batch_chunks[idx] = value
131
+ except:
132
+ # Queue is empty for this sample, skip it this iteration
133
+ pass
134
+
135
+ # Remove finished samples
136
+ self.active_samples -= samples_to_remove
137
+
138
+ if batch_chunks:
139
+ return batch_chunks
140
+ elif self.active_samples:
141
+ # If no chunks were ready but we still have active samples,
142
+ # wait a bit and try again
143
+ import time
144
+ time.sleep(0.01)
145
+ return self.__next__()
146
+ else:
147
+ raise StopIteration()
148
+
149
+
150
+ class AsyncAudioStreamer(AudioStreamer):
151
+ """
152
+ Async version of AudioStreamer for use in async contexts.
153
+ """
154
+
155
+ def __init__(
156
+ self,
157
+ batch_size: int,
158
+ stop_signal: Optional[any] = None,
159
+ timeout: Optional[float] = None,
160
+ ):
161
+ super().__init__(batch_size, stop_signal, timeout)
162
+ # Replace regular queues with async queues
163
+ self.audio_queues = [asyncio.Queue() for _ in range(batch_size)]
164
+ self.loop = asyncio.get_running_loop()
165
+
166
+ def put(self, audio_chunks: torch.Tensor, sample_indices: torch.Tensor):
167
+ """Put audio chunks in the appropriate async queues."""
168
+ for i, sample_idx in enumerate(sample_indices):
169
+ idx = sample_idx.item()
170
+ if idx < self.batch_size and not self.finished_flags[idx]:
171
+ audio_chunk = audio_chunks[i].detach().cpu()
172
+ self.loop.call_soon_threadsafe(
173
+ self.audio_queues[idx].put_nowait, audio_chunk
174
+ )
175
+
176
+ def end(self, sample_indices: Optional[torch.Tensor] = None):
177
+ """Signal the end of generation for specified samples."""
178
+ if sample_indices is None:
179
+ indices_to_end = range(self.batch_size)
180
+ else:
181
+ indices_to_end = [s.item() if torch.is_tensor(s) else s for s in sample_indices]
182
+
183
+ for idx in indices_to_end:
184
+ if idx < self.batch_size and not self.finished_flags[idx]:
185
+ self.loop.call_soon_threadsafe(
186
+ self.audio_queues[idx].put_nowait, self.stop_signal
187
+ )
188
+ self.finished_flags[idx] = True
189
+
190
+ async def get_stream(self, sample_idx: int):
191
+ """Get async iterator for a specific sample's audio stream."""
192
+ if sample_idx >= self.batch_size:
193
+ raise ValueError(f"Sample index {sample_idx} exceeds batch size {self.batch_size}")
194
+
195
+ while True:
196
+ value = await self.audio_queues[sample_idx].get()
197
+ if value == self.stop_signal:
198
+ break
199
+ yield value
200
+
201
+ def __aiter__(self):
202
+ """Returns an async iterator over all audio streams."""
203
+ return AsyncAudioBatchIterator(self)
204
+
205
+
206
+ class AsyncAudioBatchIterator:
207
+ """Async iterator for batch audio streaming."""
208
+
209
+ def __init__(self, streamer: AsyncAudioStreamer):
210
+ self.streamer = streamer
211
+ self.active_samples = set(range(streamer.batch_size))
212
+
213
+ def __aiter__(self):
214
+ return self
215
+
216
+ async def __anext__(self):
217
+ if not self.active_samples:
218
+ raise StopAsyncIteration()
219
+
220
+ batch_chunks = {}
221
+ samples_to_remove = set()
222
+
223
+ # Create tasks for all active samples
224
+ tasks = {
225
+ idx: asyncio.create_task(self._get_chunk(idx))
226
+ for idx in self.active_samples
227
+ }
228
+
229
+ # Wait for at least one chunk to be ready
230
+ done, pending = await asyncio.wait(
231
+ tasks.values(),
232
+ return_when=asyncio.FIRST_COMPLETED,
233
+ timeout=self.streamer.timeout
234
+ )
235
+
236
+ # Cancel pending tasks
237
+ for task in pending:
238
+ task.cancel()
239
+
240
+ # Process completed tasks
241
+ for idx, task in tasks.items():
242
+ if task in done:
243
+ try:
244
+ value = await task
245
+ if value == self.streamer.stop_signal:
246
+ samples_to_remove.add(idx)
247
+ else:
248
+ batch_chunks[idx] = value
249
+ except asyncio.CancelledError:
250
+ pass
251
+
252
+ self.active_samples -= samples_to_remove
253
+
254
+ if batch_chunks:
255
+ return batch_chunks
256
+ elif self.active_samples:
257
+ # Try again if we still have active samples
258
+ return await self.__anext__()
259
+ else:
260
+ raise StopAsyncIteration()
261
+
262
+ async def _get_chunk(self, idx):
263
+ """Helper to get a chunk from a specific queue."""
264
+ return await self.streamer.audio_queues[idx].get()
processor/__init__.py ADDED
File without changes
processor/vibevoice_processor.py ADDED
@@ -0,0 +1,677 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from typing import List, Optional, Union, Dict, Any, Tuple
4
+ import os
5
+ import re
6
+
7
+ import numpy as np
8
+ import torch
9
+
10
+ from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
11
+ from transformers.utils import TensorType, logging
12
+ from .vibevoice_tokenizer_processor import AudioNormalizer
13
+
14
+ logger = logging.get_logger(__name__)
15
+
16
+
17
+ class VibeVoiceProcessor:
18
+ r"""
19
+ Constructs a VibeVoice processor which wraps a VibeVoice tokenizer and audio processor into a single processor.
20
+
21
+ [`VibeVoiceProcessor`] offers all the functionalities of [`VibeVoiceTokenizer`] and [`VibeVoiceTokenizerProcessor`].
22
+ See the [`~VibeVoiceProcessor.__call__`] and [`~VibeVoiceProcessor.decode`] for more information.
23
+
24
+ Args:
25
+ tokenizer (`VibeVoiceTextTokenizer` or `VibeVoiceTextTokenizerFast`):
26
+ The tokenizer for text processing.
27
+ audio_processor (`VibeVoiceTokenizerProcessor`):
28
+ The audio processor for speech processing.
29
+ speech_tok_compress_ratio (`int`, *optional*, defaults to 3200):
30
+ The compression ratio for speech tokenization.
31
+ db_normalize (`bool`, *optional*, defaults to True):
32
+ Whether to apply decibel normalization to audio inputs.
33
+ """
34
+
35
+ def __init__(self, tokenizer=None, audio_processor=None, speech_tok_compress_ratio=3200, db_normalize=True, **kwargs):
36
+ self.tokenizer = tokenizer
37
+ self.audio_processor = audio_processor
38
+ self.speech_tok_compress_ratio = speech_tok_compress_ratio
39
+ self.db_normalize = db_normalize
40
+ self.audio_normalizer = AudioNormalizer() if db_normalize else None
41
+ self.system_prompt = " Transform the text provided by various speakers into speech output, utilizing the distinct voice of each respective speaker.\n"
42
+
43
+ @classmethod
44
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
45
+ """
46
+ Instantiate a VibeVoiceProcessor from a pretrained VibeVoice processor.
47
+
48
+ Args:
49
+ pretrained_model_name_or_path (`str` or `os.PathLike`):
50
+ This can be either:
51
+ - a string, the *model id* of a pretrained model
52
+ - a path to a *directory* containing processor config
53
+
54
+ Returns:
55
+ [`VibeVoiceProcessor`]: The processor object instantiated from pretrained model.
56
+ """
57
+ import os
58
+ import json
59
+ from .vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
60
+ from vibevoice.modular.modular_vibevoice_text_tokenizer import (
61
+ VibeVoiceTextTokenizer,
62
+ VibeVoiceTextTokenizerFast
63
+ )
64
+
65
+ # Load processor configuration
66
+ config_path = os.path.join(pretrained_model_name_or_path, "preprocessor_config.json")
67
+ if os.path.exists(config_path):
68
+ with open(config_path, 'r') as f:
69
+ config = json.load(f)
70
+ else:
71
+ logger.warning(f"No preprocessor_config.json found at {pretrained_model_name_or_path}, using defaults")
72
+ config = {
73
+ "speech_tok_compress_ratio": 3200,
74
+ "db_normalize": True,
75
+ }
76
+
77
+ # Extract main processor parameters
78
+ speech_tok_compress_ratio = config.get("speech_tok_compress_ratio", 3200)
79
+ db_normalize = config.get("db_normalize", True)
80
+
81
+ # Load tokenizer - try from model path first, then fallback to Qwen
82
+ language_model_pretrained_name = config.get("language_model_pretrained_name", None) or kwargs.pop("language_model_pretrained_name", "Qwen/Qwen2.5-1.5B")
83
+ logger.info(f"Loading tokenizer from {language_model_pretrained_name}")
84
+ if 'qwen' in language_model_pretrained_name.lower():
85
+ tokenizer = VibeVoiceTextTokenizerFast.from_pretrained(
86
+ language_model_pretrained_name,
87
+ **kwargs
88
+ )
89
+ else:
90
+ raise ValueError(f"Unsupported tokenizer type for {language_model_pretrained_name}. Supported types: Qwen, Llama, Gemma.")
91
+
92
+ # Load audio processor
93
+ if "audio_processor" in config:
94
+ # Create audio processor from config
95
+ audio_config = config["audio_processor"]
96
+ audio_processor = VibeVoiceTokenizerProcessor(
97
+ sampling_rate=audio_config.get("sampling_rate", 24000),
98
+ normalize_audio=audio_config.get("normalize_audio", True),
99
+ target_dB_FS=audio_config.get("target_dB_FS", -25),
100
+ eps=audio_config.get("eps", 1e-6),
101
+ )
102
+ else:
103
+ # Create default audio processor
104
+ audio_processor = VibeVoiceTokenizerProcessor()
105
+
106
+ # Create and return the processor
107
+ return cls(
108
+ tokenizer=tokenizer,
109
+ audio_processor=audio_processor,
110
+ speech_tok_compress_ratio=speech_tok_compress_ratio,
111
+ db_normalize=db_normalize,
112
+ )
113
+
114
+ def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs):
115
+ """
116
+ Save a processor to a directory, so that it can be re-loaded using the
117
+ [`~VibeVoiceProcessor.from_pretrained`] class method.
118
+
119
+ Args:
120
+ save_directory (`str` or `os.PathLike`):
121
+ Directory where the processor will be saved.
122
+ """
123
+ import os
124
+ import json
125
+
126
+ os.makedirs(save_directory, exist_ok=True)
127
+
128
+ # Save processor configuration
129
+ processor_config = {
130
+ "processor_class": "VibeVoiceProcessor",
131
+ "speech_tok_compress_ratio": self.speech_tok_compress_ratio,
132
+ "db_normalize": self.db_normalize,
133
+ "audio_processor": {
134
+ "feature_extractor_type": "VibeVoiceTokenizerProcessor",
135
+ "sampling_rate": getattr(self.audio_processor, 'sampling_rate', 24000),
136
+ "normalize_audio": getattr(self.audio_processor, 'normalize_audio', True),
137
+ "target_dB_FS": getattr(self.audio_processor, 'target_dB_FS', -25),
138
+ "eps": getattr(self.audio_processor, 'eps', 1e-6),
139
+ }
140
+ }
141
+
142
+ config_path = os.path.join(save_directory, "preprocessor_config.json")
143
+ with open(config_path, 'w') as f:
144
+ json.dump(processor_config, f, indent=2)
145
+
146
+ logger.info(f"Processor configuration saved in {config_path}")
147
+
148
+ def __call__(
149
+ self,
150
+ text: Optional[Union[str, List[str], TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
151
+ voice_samples: Optional[Union[List[Union[str, np.ndarray]], List[List[Union[str, np.ndarray]]]]] = None,
152
+ padding: Union[bool, str, PaddingStrategy] = True,
153
+ truncation: Union[bool, str, TruncationStrategy] = False,
154
+ max_length: Optional[int] = None,
155
+ return_tensors: Optional[Union[str, TensorType]] = None,
156
+ return_attention_mask: bool = True,
157
+ **kwargs,
158
+ ) -> BatchEncoding:
159
+ """
160
+ Main method to process one or more podcast scripts with optional voice samples.
161
+
162
+ Args:
163
+ text (`str`, `List[str]`):
164
+ The input text(s) to process. Can be:
165
+ - A single script string
166
+ - A list of script strings for batch processing
167
+ - A path to a .json or .txt file
168
+ - A list of paths
169
+ voice_samples (`List[Union[str, np.ndarray]]`, `List[List[Union[str, np.ndarray]]]`, *optional*):
170
+ Voice samples for each script. Can be:
171
+ - A list of samples for a single script
172
+ - A list of lists for batch processing
173
+ padding (`bool`, `str` or `PaddingStrategy`, defaults to `True`):
174
+ Whether to pad sequences to the same length
175
+ truncation (`bool`, `str` or `TruncationStrategy`, defaults to `False`):
176
+ Whether to truncate sequences
177
+ max_length (`int`, *optional*):
178
+ Maximum length of the returned sequences
179
+ return_tensors (`str` or `TensorType`, *optional*):
180
+ If set, will return tensors of a particular framework
181
+ return_attention_mask (`bool`, defaults to `True`):
182
+ Whether to return the attention mask
183
+
184
+ Returns:
185
+ `BatchEncoding`: A BatchEncoding with the following fields:
186
+ - **input_ids** -- List of token id sequences or tensor
187
+ - **attention_mask** -- List of attention masks or tensor
188
+ - **speech_tensors** -- Padded speech inputs (if voice_samples provided)
189
+ - **speech_masks** -- Speech masks (if voice_samples provided)
190
+ - **speech_input_mask** -- Boolean masks indicating speech token positions
191
+ """
192
+ # Handle single vs batch input
193
+ if isinstance(text, str) or (isinstance(text, list) and len(text) > 0 and not isinstance(text[0], str)):
194
+ # Single input
195
+ texts = [text]
196
+ is_batched = False
197
+ else:
198
+ # Batch input
199
+ texts = text
200
+ is_batched = True
201
+
202
+ # Handle voice samples
203
+ if voice_samples is not None:
204
+ if not is_batched or (isinstance(voice_samples[0], (str, np.ndarray))):
205
+ # Single set of voice samples
206
+ voice_samples_list = [voice_samples]
207
+ else:
208
+ # Batch of voice samples
209
+ voice_samples_list = voice_samples
210
+ else:
211
+ voice_samples_list = [None] * len(texts)
212
+
213
+ # Process each input
214
+ all_encodings = []
215
+ for text_input, voice_input in zip(texts, voice_samples_list):
216
+ encoding = self._process_single(text_input, voice_input)
217
+ all_encodings.append(encoding)
218
+
219
+ # Combine batch
220
+ batch_encoding = self._batch_encode(
221
+ all_encodings,
222
+ padding=padding,
223
+ truncation=truncation,
224
+ max_length=max_length,
225
+ return_tensors=return_tensors,
226
+ return_attention_mask=return_attention_mask,
227
+ )
228
+
229
+ return batch_encoding
230
+
231
+ def _process_single(
232
+ self,
233
+ text: Union[str, TextInput],
234
+ voice_samples: Optional[List[Union[str, np.ndarray]]] = None,
235
+ ) -> Dict[str, Any]:
236
+ """Process a single podcast script."""
237
+ # Determine if text is a file path or direct script
238
+ script = None
239
+ if isinstance(text, str):
240
+ # Check if it's a file path
241
+ if text.endswith('.json') and os.path.exists(text):
242
+ script = self._convert_json_to_script(text)
243
+ elif text.endswith('.txt') and os.path.exists(text):
244
+ script = self._convert_text_to_script(text)
245
+ else:
246
+ # Assume it's the script content directly
247
+ script = text
248
+
249
+ if script is None:
250
+ raise ValueError(f"Could not process input text: {text}")
251
+
252
+ # Parse the script
253
+ parsed_lines = self._parse_script(script)
254
+ all_speakers = list(set(speaker_id for speaker_id, _ in parsed_lines))
255
+
256
+ # Create system prompt
257
+ # system_tokens = self.tokenizer.encode(self.system_prompt, add_special_tokens=False)
258
+ system_tokens = self.tokenizer.encode(self.system_prompt)
259
+
260
+ # Process voice samples if provided
261
+ if voice_samples:
262
+ voice_tokens, voice_speech_inputs, voice_speech_masks = self._create_voice_prompt(voice_samples[:len(all_speakers)])
263
+ else:
264
+ voice_tokens, voice_speech_inputs, voice_speech_masks = [], [], []
265
+
266
+ # Build full token sequence
267
+ full_tokens = system_tokens + voice_tokens
268
+ speech_input_mask = [False] * len(system_tokens) + voice_speech_masks
269
+
270
+ # Add text input section
271
+ full_tokens += self.tokenizer.encode(' Text input:\n', add_special_tokens=False)
272
+ speech_input_mask += [False] * len(self.tokenizer.encode(' Text input:\n', add_special_tokens=False))
273
+
274
+ for speaker_id, speaker_text in parsed_lines:
275
+ speaker_text_tokens = self.tokenizer.encode(f" Speaker {speaker_id}:{speaker_text}\n", add_special_tokens=False)
276
+ full_tokens += speaker_text_tokens
277
+ speech_input_mask += [False] * len(speaker_text_tokens)
278
+
279
+ # Add speech output section
280
+ full_tokens += self.tokenizer.encode(' Speech output:\n', add_special_tokens=False) + [self.tokenizer.speech_start_id]
281
+ speech_input_mask += [False] * (len(self.tokenizer.encode(' Speech output:\n', add_special_tokens=False)) + 1)
282
+
283
+ return {
284
+ "input_ids": full_tokens,
285
+ "speech_inputs": voice_speech_inputs if voice_speech_inputs else None,
286
+ "speech_input_mask": speech_input_mask,
287
+ "parsed_script": parsed_lines,
288
+ "all_speakers": all_speakers,
289
+ }
290
+
291
+ def _batch_encode(
292
+ self,
293
+ encodings: List[Dict[str, Any]],
294
+ padding: Union[bool, str, PaddingStrategy] = True,
295
+ truncation: Union[bool, str, TruncationStrategy] = False,
296
+ max_length: Optional[int] = None,
297
+ return_tensors: Optional[Union[str, TensorType]] = None,
298
+ return_attention_mask: bool = True,
299
+ ) -> BatchEncoding:
300
+ """Combine multiple encodings into a batch with padding."""
301
+ # Extract input_ids and create attention_mask
302
+ input_ids_list = [enc["input_ids"] for enc in encodings]
303
+ speech_input_masks_list = [enc["speech_input_mask"] for enc in encodings]
304
+
305
+ # Determine padding strategy
306
+ if isinstance(padding, bool):
307
+ padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
308
+ elif isinstance(padding, str):
309
+ padding_strategy = PaddingStrategy(padding)
310
+ else:
311
+ padding_strategy = padding
312
+
313
+ # Apply padding to input_ids
314
+ if padding_strategy != PaddingStrategy.DO_NOT_PAD:
315
+ if padding_strategy == PaddingStrategy.LONGEST:
316
+ max_len = max(len(ids) for ids in input_ids_list)
317
+ elif padding_strategy == PaddingStrategy.MAX_LENGTH and max_length is not None:
318
+ max_len = max_length
319
+ else:
320
+ max_len = max(len(ids) for ids in input_ids_list)
321
+
322
+ # Pad sequences
323
+ padded_input_ids = []
324
+ attention_masks = []
325
+ padded_speech_input_masks = []
326
+
327
+ for input_ids, speech_mask in zip(input_ids_list, speech_input_masks_list):
328
+ # Truncate if needed
329
+ if truncation and len(input_ids) > max_len:
330
+ input_ids = input_ids[:max_len]
331
+ speech_mask = speech_mask[:max_len]
332
+
333
+ # Pad
334
+ padding_length = max_len - len(input_ids)
335
+ # padded_ids = [self.tokenizer.pad_token_id] * padding_length + input_ids
336
+ padded_ids = [self.tokenizer.pad_id] * padding_length + input_ids
337
+ attention_mask = [0] * padding_length + [1] * len(input_ids)
338
+ padded_speech_mask = [False] * padding_length + speech_mask
339
+
340
+ padded_input_ids.append(padded_ids)
341
+ attention_masks.append(attention_mask)
342
+ padded_speech_input_masks.append(padded_speech_mask)
343
+
344
+ input_ids_list = padded_input_ids
345
+ speech_input_masks_list = padded_speech_input_masks
346
+ else:
347
+ # No padding, just create attention masks
348
+ attention_masks = [[1] * len(ids) for ids in input_ids_list] if return_attention_mask else None
349
+
350
+ # Process speech inputs
351
+ all_speech_inputs = []
352
+ has_speech = False
353
+ for enc in encodings:
354
+ if enc["speech_inputs"] is not None:
355
+ all_speech_inputs.extend(enc["speech_inputs"])
356
+ has_speech = True
357
+
358
+ # Prepare batch encoding
359
+ batch_encoding = BatchEncoding()
360
+
361
+ # Handle tensor conversion
362
+ if return_tensors is not None:
363
+ batch_encoding["input_ids"] = torch.tensor(input_ids_list, dtype=torch.long)
364
+ if return_attention_mask and attention_masks is not None:
365
+ batch_encoding["attention_mask"] = torch.tensor(attention_masks, dtype=torch.long)
366
+ batch_encoding["speech_input_mask"] = torch.tensor(speech_input_masks_list, dtype=torch.bool)
367
+ else:
368
+ batch_encoding["input_ids"] = input_ids_list
369
+ if return_attention_mask and attention_masks is not None:
370
+ batch_encoding["attention_mask"] = attention_masks
371
+ batch_encoding["speech_input_mask"] = speech_input_masks_list
372
+
373
+ # Process speech tensors if present
374
+ if has_speech:
375
+ speech_dict = self.prepare_speech_inputs(
376
+ all_speech_inputs,
377
+ return_tensors=return_tensors,
378
+ )
379
+ batch_encoding["speech_tensors"] = speech_dict["padded_speeches"]
380
+ batch_encoding["speech_masks"] = speech_dict["speech_masks"]
381
+ else:
382
+ batch_encoding["speech_tensors"] = None
383
+ batch_encoding["speech_masks"] = None
384
+
385
+ # Add metadata
386
+ batch_encoding["parsed_scripts"] = [enc["parsed_script"] for enc in encodings]
387
+ batch_encoding["all_speakers_list"] = [enc["all_speakers"] for enc in encodings]
388
+
389
+ return batch_encoding
390
+
391
+ def _create_voice_prompt(
392
+ self,
393
+ speaker_samples: List[Union[str, np.ndarray]]
394
+ ) -> Tuple[List[int], List[np.ndarray], List[bool]]:
395
+ """
396
+ Create voice prompt tokens and process audio samples.
397
+
398
+ Returns:
399
+ tuple: (voice_tokens, voice_speech_inputs, voice_speech_masks)
400
+ """
401
+ vae_token_id = self.tokenizer.speech_diffusion_id
402
+
403
+ voice_full_tokens = self.tokenizer.encode(' Voice input:\n', add_special_tokens=False)
404
+ voice_speech_inputs = []
405
+ voice_speech_masks = [False] * len(voice_full_tokens)
406
+
407
+ for speaker_id, speaker_audio in enumerate(speaker_samples):
408
+ prefix_tokens = self.tokenizer.encode(f" Speaker {speaker_id}:", add_special_tokens=False)
409
+
410
+ # Process audio
411
+ if isinstance(speaker_audio, str):
412
+ # Load audio from file
413
+ wav = self.audio_processor._load_audio_from_path(speaker_audio)
414
+ else:
415
+ wav = np.array(speaker_audio, dtype=np.float32)
416
+
417
+ # Apply normalization if needed
418
+ if self.db_normalize and self.audio_normalizer:
419
+ wav = self.audio_normalizer(wav)
420
+
421
+ # Calculate token length based on compression ratio
422
+ # if speaker_audio.endswith('.pt') or speaker_audio.endswith('.npy'):
423
+ # vae_tok_len = wav.shape[0]
424
+ # else:
425
+ vae_tok_len = math.ceil(wav.shape[0] / self.speech_tok_compress_ratio)
426
+
427
+ # Build tokens and masks
428
+ speaker_tokens = (prefix_tokens +
429
+ [self.tokenizer.speech_start_id] +
430
+ [vae_token_id] * vae_tok_len +
431
+ [self.tokenizer.speech_end_id] +
432
+ self.tokenizer.encode('\n', add_special_tokens=False))
433
+
434
+ vae_input_mask = ([False] * len(prefix_tokens) +
435
+ [False] +
436
+ [True] * vae_tok_len +
437
+ [False] +
438
+ [False])
439
+
440
+ voice_full_tokens.extend(speaker_tokens)
441
+ voice_speech_masks.extend(vae_input_mask)
442
+ voice_speech_inputs.append(wav)
443
+
444
+ return voice_full_tokens, voice_speech_inputs, voice_speech_masks
445
+
446
+ def prepare_speech_inputs(
447
+ self,
448
+ speech_inputs: List[np.ndarray],
449
+ return_tensors: Optional[Union[str, TensorType]] = None,
450
+ device: Optional[Union[str, torch.device]] = None,
451
+ dtype: Optional[torch.dtype] = None,
452
+ ) -> Dict[str, Any]:
453
+ """
454
+ Prepare speech inputs for model consumption.
455
+
456
+ Args:
457
+ speech_inputs: List of speech arrays
458
+ return_tensors: Output tensor type
459
+ device: Device to place tensors on
460
+ dtype: Data type for tensors
461
+
462
+ Returns:
463
+ Dictionary with padded_speeches and speech_masks
464
+ """
465
+ if not speech_inputs:
466
+ return {"padded_speeches": None, "speech_masks": None}
467
+
468
+ # Calculate sequence lengths
469
+ vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) for s in speech_inputs]
470
+ # vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) if s.ndim == 1 else s.shape[0] for s in speech_inputs]
471
+ max_speech_length = max(s.shape[0] for s in speech_inputs)
472
+
473
+ # Pad speeches
474
+ if speech_inputs[0].ndim == 1:
475
+ padded_speeches = np.full((len(speech_inputs), max_speech_length), fill_value=0, dtype=np.float32)
476
+ else:
477
+ padded_speeches = np.full((len(speech_inputs), max_speech_length, speech_inputs[0].shape[-1]), fill_value=0, dtype=np.float32)
478
+ speech_masks = np.zeros((len(speech_inputs), max(vae_tok_seqlens)), dtype=np.bool_)
479
+
480
+ for i, (speech, vae_tok_length) in enumerate(zip(speech_inputs, vae_tok_seqlens)):
481
+ padded_speeches[i, :len(speech)] = speech
482
+ speech_masks[i, :vae_tok_length] = True
483
+
484
+ result = {
485
+ "padded_speeches": padded_speeches,
486
+ "speech_masks": speech_masks,
487
+ }
488
+
489
+ # Convert to tensors if requested
490
+ if return_tensors == "pt":
491
+ result["padded_speeches"] = torch.tensor(padded_speeches, device=device, dtype=dtype or torch.float32)
492
+ result["speech_masks"] = torch.tensor(speech_masks, device=device, dtype=torch.bool)
493
+
494
+ return result
495
+
496
+ def _convert_json_to_script(self, json_file: str) -> str:
497
+ """
498
+ Convert JSON format to script format.
499
+ Expected JSON format:
500
+ [
501
+ {"speaker": "1", "text": "Hello everyone..."},
502
+ {"speaker": "2", "text": "Great to be here..."}
503
+ ]
504
+ """
505
+ import json
506
+
507
+ with open(json_file, 'r', encoding='utf-8') as f:
508
+ data = json.load(f)
509
+
510
+ if not isinstance(data, list):
511
+ raise ValueError("JSON file must contain a list of speaker entries")
512
+
513
+ script_lines = []
514
+ for item in data:
515
+ if not isinstance(item, dict):
516
+ logger.warning(f"Skipping non-dict entry: {item}")
517
+ continue
518
+
519
+ speaker = item.get('speaker')
520
+ text = item.get('text')
521
+
522
+ if speaker is None or text is None:
523
+ logger.warning(f"Skipping entry missing speaker or text: {item}")
524
+ continue
525
+
526
+ # Ensure speaker ID is valid
527
+ try:
528
+ speaker_id = int(speaker)
529
+ except (ValueError, TypeError):
530
+ logger.warning(f"Invalid speaker ID: {speaker}, skipping entry")
531
+ continue
532
+
533
+ # Clean up text
534
+ text = text.strip()
535
+ if text:
536
+ script_lines.append(f"Speaker {speaker_id}: {text}")
537
+
538
+ if not script_lines:
539
+ raise ValueError("No valid entries found in JSON file")
540
+
541
+ return "\n".join(script_lines)
542
+
543
+ def _convert_text_to_script(self, text_file: str) -> str:
544
+ """
545
+ Convert text file to script format.
546
+ Handles multiple formats:
547
+ 1. Already formatted as "Speaker X: text"
548
+ 2. Plain text (assigns to Speaker 1)
549
+
550
+ Handles edge cases like multiple colons in a line.
551
+ """
552
+ with open(text_file, 'r', encoding='utf-8') as f:
553
+ lines = f.readlines()
554
+
555
+ script_lines = []
556
+ current_speaker = 1
557
+
558
+ for line in lines:
559
+ line = line.strip()
560
+ if not line:
561
+ continue
562
+
563
+ # Try to parse as "Speaker X: text" format
564
+ # Use regex to be more robust
565
+ speaker_match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE)
566
+
567
+ if speaker_match:
568
+ speaker_id = int(speaker_match.group(1))
569
+ text = speaker_match.group(2).strip()
570
+ if text:
571
+ script_lines.append(f"Speaker {speaker_id}: {text}")
572
+ else:
573
+ # Treat as plain text - assign to current speaker
574
+ script_lines.append(f"Speaker {current_speaker}: {line}")
575
+
576
+ if not script_lines:
577
+ raise ValueError("No valid content found in text file")
578
+
579
+ return "\n".join(script_lines)
580
+
581
+ def _parse_script(self, script: str) -> List[Tuple[int, str]]:
582
+ """Parse script into list of (speaker_id, text) tuples."""
583
+ lines = script.strip().split("\n")
584
+ parsed_lines = []
585
+ speaker_ids = []
586
+
587
+ # First pass: parse all lines and collect speaker IDs
588
+ for line in lines:
589
+ if not line.strip():
590
+ continue
591
+
592
+ # Use regex to handle edge cases like multiple colons
593
+ match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line.strip(), re.IGNORECASE)
594
+
595
+ if match:
596
+ speaker_id = int(match.group(1))
597
+ text = ' ' + match.group(2).strip()
598
+ parsed_lines.append((speaker_id, text))
599
+ speaker_ids.append(speaker_id)
600
+ else:
601
+ logger.warning(f"Could not parse line: '{line}'")
602
+
603
+ if not parsed_lines:
604
+ raise ValueError("No valid speaker lines found in script")
605
+
606
+ # Check if we need to normalize speaker IDs (only if all are > 0)
607
+ min_speaker_id = min(speaker_ids)
608
+ if min_speaker_id > 0:
609
+ # Normalize to start from 0
610
+ normalized_lines = []
611
+ for speaker_id, text in parsed_lines:
612
+ normalized_lines.append((speaker_id - 1, text))
613
+ return normalized_lines
614
+ else:
615
+ # Keep original IDs
616
+ return parsed_lines
617
+
618
+ def _merge_inputs(self, text_inputs: BatchEncoding, audio_inputs: Dict) -> BatchEncoding:
619
+ """Merge text and audio inputs into a single BatchEncoding."""
620
+ # Start with text inputs
621
+ merged = BatchEncoding(text_inputs)
622
+
623
+ # Add audio-specific fields
624
+ if "audio" in audio_inputs:
625
+ merged["speech_inputs"] = audio_inputs["audio"]
626
+ if "streaming" in audio_inputs:
627
+ merged["streaming"] = audio_inputs["streaming"]
628
+
629
+ return merged
630
+
631
+ def batch_decode(self, *args, **kwargs):
632
+ """
633
+ This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.batch_decode`].
634
+ Please refer to the docstring of this method for more information.
635
+ """
636
+ return self.tokenizer.batch_decode(*args, **kwargs)
637
+
638
+ def decode(self, *args, **kwargs):
639
+ """
640
+ This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.decode`].
641
+ Please refer to the docstring of this method for more information.
642
+ """
643
+ return self.tokenizer.decode(*args, **kwargs)
644
+
645
+ @property
646
+ def model_input_names(self):
647
+ """
648
+ Return the list of inputs accepted by the model.
649
+ """
650
+ tokenizer_input_names = self.tokenizer.model_input_names
651
+ audio_processor_input_names = self.audio_processor.model_input_names
652
+ return list(dict.fromkeys(tokenizer_input_names + audio_processor_input_names + ["speech_inputs", "speech_input_mask"]))
653
+
654
+ def save_audio(self,
655
+ audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
656
+ output_path: str = "output.wav",
657
+ sampling_rate: Optional[int] = None,
658
+ normalize: bool = False,
659
+ batch_prefix: str = "audio_",
660
+ ) -> str:
661
+ """
662
+ Save audio data to a file.
663
+ Args:
664
+ audio (Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]):
665
+ The audio data to save. Can be a single tensor/array or a list of them.
666
+ output_path (str, optional): Path to save the audio file. Defaults to "output.wav".
667
+ sampling_rate (int, optional): Sampling rate for the audio. If None, uses the processor's default.
668
+ normalize (bool, optional): Whether to normalize the audio before saving. Defaults to False.
669
+ batch_prefix (str, optional): Prefix for batch audio files. Defaults to "audio_".
670
+ Returns:
671
+ str: The path to the saved audio file.
672
+ """
673
+ return self.audio_processor.save_audio(audio, output_path=output_path, sampling_rate=sampling_rate, normalize=normalize, batch_prefix=batch_prefix)
674
+
675
+ __all__ = [
676
+ "VibeVoiceProcessor",
677
+ ]
processor/vibevoice_tokenizer_processor.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Processor class for VibeVoice models.
3
+ """
4
+
5
+ import os
6
+ import json
7
+ import warnings
8
+ from typing import List, Optional, Union, Dict, Any
9
+
10
+ import numpy as np
11
+ import torch
12
+
13
+ from transformers.feature_extraction_utils import FeatureExtractionMixin
14
+ from transformers.utils import logging
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class AudioNormalizer:
20
+ """
21
+ Audio normalization class for VibeVoice tokenizer.
22
+
23
+ This class provides audio normalization to ensure consistent input levels
24
+ for the VibeVoice tokenizer while maintaining audio quality.
25
+ """
26
+
27
+ def __init__(self, target_dB_FS: float = -25, eps: float = 1e-6):
28
+ """
29
+ Initialize the audio normalizer.
30
+
31
+ Args:
32
+ target_dB_FS (float): Target dB FS level for the audio. Default: -25
33
+ eps (float): Small value to avoid division by zero. Default: 1e-6
34
+ """
35
+ self.target_dB_FS = target_dB_FS
36
+ self.eps = eps
37
+
38
+ def tailor_dB_FS(self, audio: np.ndarray) -> tuple:
39
+ """
40
+ Adjust the audio to the target dB FS level.
41
+
42
+ Args:
43
+ audio (np.ndarray): Input audio signal
44
+
45
+ Returns:
46
+ tuple: (normalized_audio, rms, scalar)
47
+ """
48
+ rms = np.sqrt(np.mean(audio**2))
49
+ scalar = 10 ** (self.target_dB_FS / 20) / (rms + self.eps)
50
+ normalized_audio = audio * scalar
51
+ return normalized_audio, rms, scalar
52
+
53
+ def avoid_clipping(self, audio: np.ndarray, scalar: Optional[float] = None) -> tuple:
54
+ """
55
+ Avoid clipping by scaling down if necessary.
56
+
57
+ Args:
58
+ audio (np.ndarray): Input audio signal
59
+ scalar (float, optional): Explicit scaling factor
60
+
61
+ Returns:
62
+ tuple: (normalized_audio, scalar)
63
+ """
64
+ if scalar is None:
65
+ max_val = np.max(np.abs(audio))
66
+ if max_val > 1.0:
67
+ scalar = max_val + self.eps
68
+ else:
69
+ scalar = 1.0
70
+
71
+ return audio / scalar, scalar
72
+
73
+ def __call__(self, audio: np.ndarray) -> np.ndarray:
74
+ """
75
+ Normalize the audio by adjusting to target dB FS and avoiding clipping.
76
+
77
+ Args:
78
+ audio (np.ndarray): Input audio signal
79
+
80
+ Returns:
81
+ np.ndarray: Normalized audio signal
82
+ """
83
+ # First adjust to target dB FS
84
+ audio, _, _ = self.tailor_dB_FS(audio)
85
+ # Then avoid clipping
86
+ audio, _ = self.avoid_clipping(audio)
87
+ return audio
88
+
89
+
90
+ # Change from ProcessorMixin to FeatureExtractionMixin which is designed for single components
91
+ class VibeVoiceTokenizerProcessor(FeatureExtractionMixin):
92
+ """
93
+ Processor for VibeVoice acoustic tokenizer models.
94
+
95
+ This processor handles audio preprocessing for VibeVoice models, including:
96
+ - Audio format conversion (stereo to mono)
97
+ - Optional audio normalization
98
+ - Streaming support for infinite-length audio
99
+
100
+ Args:
101
+ sampling_rate (int, optional): Expected sampling rate. Defaults to 24000.
102
+ normalize_audio (bool, optional): Whether to normalize audio. Defaults to True.
103
+ target_dB_FS (float, optional): Target dB FS for normalization. Defaults to -25.
104
+ eps (float, optional): Small value for numerical stability. Defaults to 1e-6.
105
+ """
106
+ model_input_names = ["input_features"]
107
+
108
+ def __init__(
109
+ self,
110
+ sampling_rate: int = 24000,
111
+ normalize_audio: bool = True,
112
+ target_dB_FS: float = -25,
113
+ eps: float = 1e-6,
114
+ **kwargs,
115
+ ):
116
+ super().__init__(**kwargs)
117
+
118
+ self.sampling_rate = sampling_rate
119
+ self.normalize_audio = normalize_audio
120
+
121
+ # Initialize audio normalizer if needed
122
+ if self.normalize_audio:
123
+ self.normalizer = AudioNormalizer(target_dB_FS=target_dB_FS, eps=eps)
124
+ else:
125
+ self.normalizer = None
126
+
127
+ # Save config
128
+ self.feature_extractor_dict = {
129
+ "sampling_rate": sampling_rate,
130
+ "normalize_audio": normalize_audio,
131
+ "target_dB_FS": target_dB_FS,
132
+ "eps": eps,
133
+ }
134
+
135
+ def _ensure_mono(self, audio: np.ndarray) -> np.ndarray:
136
+ """
137
+ Convert stereo audio to mono if needed.
138
+
139
+ Args:
140
+ audio (np.ndarray): Input audio array
141
+
142
+ Returns:
143
+ np.ndarray: Mono audio array
144
+ """
145
+ if len(audio.shape) == 1:
146
+ return audio
147
+ elif len(audio.shape) == 2:
148
+ if audio.shape[0] == 2: # (2, time)
149
+ return np.mean(audio, axis=0)
150
+ elif audio.shape[1] == 2: # (time, 2)
151
+ return np.mean(audio, axis=1)
152
+ else:
153
+ # If one dimension is 1, squeeze it
154
+ if audio.shape[0] == 1:
155
+ return audio.squeeze(0)
156
+ elif audio.shape[1] == 1:
157
+ return audio.squeeze(1)
158
+ else:
159
+ raise ValueError(f"Unexpected audio shape: {audio.shape}")
160
+ else:
161
+ raise ValueError(f"Audio should be 1D or 2D, got shape: {audio.shape}")
162
+
163
+ def _process_single_audio(self, audio: Union[np.ndarray, List[float]]) -> np.ndarray:
164
+ """
165
+ Process a single audio array.
166
+
167
+ Args:
168
+ audio: Single audio input
169
+
170
+ Returns:
171
+ np.ndarray: Processed audio
172
+ """
173
+ # Convert to numpy array
174
+ if not isinstance(audio, np.ndarray):
175
+ audio = np.array(audio, dtype=np.float32)
176
+ else:
177
+ audio = audio.astype(np.float32)
178
+
179
+ # Ensure mono
180
+ audio = self._ensure_mono(audio)
181
+
182
+ # Normalize if requested
183
+ if self.normalize_audio and self.normalizer is not None:
184
+ audio = self.normalizer(audio)
185
+
186
+ return audio
187
+
188
+ def __call__(
189
+ self,
190
+ audio: Union[str, np.ndarray, List[float], List[np.ndarray], List[List[float]], List[str]] = None,
191
+ sampling_rate: Optional[int] = None,
192
+ return_tensors: Optional[str] = None,
193
+ **kwargs,
194
+ ):
195
+ """
196
+ Process audio for VibeVoice models.
197
+
198
+ Args:
199
+ audio: Audio input(s) to process. Can be:
200
+ - str: Path to audio file
201
+ - np.ndarray: Audio array
202
+ - List[float]: Audio as list of floats
203
+ - List[np.ndarray]: Batch of audio arrays
204
+ - List[str]: Batch of audio file paths
205
+ sampling_rate (int, optional): Sampling rate of the input audio
206
+ return_tensors (str, optional): Return format ('pt' for PyTorch, 'np' for NumPy)
207
+
208
+ Returns:
209
+ dict: Processed audio inputs with keys:
210
+ - input_features: Audio tensor(s) ready for the model
211
+ """
212
+ if audio is None:
213
+ raise ValueError("Audio input is required")
214
+
215
+ # Validate sampling rate
216
+ if sampling_rate is not None and sampling_rate != self.sampling_rate:
217
+ logger.warning(
218
+ f"Input sampling rate ({sampling_rate}) differs from expected "
219
+ f"sampling rate ({self.sampling_rate}). Please resample your audio."
220
+ )
221
+
222
+ # Handle different input types
223
+ if isinstance(audio, str):
224
+ # Single audio file path
225
+ audio = self._load_audio_from_path(audio)
226
+ is_batched = False
227
+ elif isinstance(audio, list):
228
+ if len(audio) == 0:
229
+ raise ValueError("Empty audio list provided")
230
+
231
+ # Check if it's a list of file paths
232
+ if all(isinstance(item, str) for item in audio):
233
+ # Batch of audio file paths
234
+ audio = [self._load_audio_from_path(path) for path in audio]
235
+ is_batched = True
236
+ else:
237
+ # Check if it's batched audio arrays
238
+ is_batched = isinstance(audio[0], (np.ndarray, list))
239
+ else:
240
+ # Single audio array or list
241
+ is_batched = False
242
+
243
+ # Process audio
244
+ if is_batched:
245
+ processed_audio = [self._process_single_audio(a) for a in audio]
246
+ else:
247
+ processed_audio = [self._process_single_audio(audio)]
248
+
249
+ # Convert to tensors if requested
250
+ if return_tensors == "pt":
251
+ if len(processed_audio) == 1:
252
+ # Create a proper batch dimension (B, T)
253
+ input_features = torch.from_numpy(processed_audio[0]).unsqueeze(0).unsqueeze(1)
254
+ else:
255
+ # For batched input with different lengths, create a batch properly
256
+ input_features = torch.stack([torch.from_numpy(a) for a in processed_audio]).unsqueeze(1)
257
+ elif return_tensors == "np":
258
+ if len(processed_audio) == 1:
259
+ input_features = processed_audio[0][np.newaxis, np.newaxis, :]
260
+ else:
261
+ input_features = np.stack(processed_audio)[:, np.newaxis, :]
262
+ else:
263
+ input_features = processed_audio[0] if len(processed_audio) == 1 else processed_audio
264
+
265
+ outputs = {
266
+ "audio": input_features, # Use "audio" instead of "input_features"
267
+ }
268
+
269
+ return outputs
270
+
271
+ def _load_audio_from_path(self, audio_path: str) -> np.ndarray:
272
+ """
273
+ Load audio from file path.
274
+
275
+ Args:
276
+ audio_path (str): Path to audio file
277
+
278
+ Returns:
279
+ np.ndarray: Loaded audio array
280
+ """
281
+ # Get file extension to determine loading method
282
+ file_ext = os.path.splitext(audio_path)[1].lower()
283
+
284
+ if file_ext in ['.wav', '.mp3', '.flac', '.m4a', '.ogg']:
285
+ # Audio file - use librosa
286
+ import librosa
287
+ audio_array, sr = librosa.load(
288
+ audio_path,
289
+ sr=self.sampling_rate,
290
+ mono=True
291
+ )
292
+ return audio_array
293
+ elif file_ext == '.pt':
294
+ # PyTorch tensor file
295
+ audio_tensor = torch.load(audio_path, map_location='cpu').squeeze()
296
+ if isinstance(audio_tensor, torch.Tensor):
297
+ audio_array = audio_tensor.numpy()
298
+ else:
299
+ audio_array = np.array(audio_tensor)
300
+ return audio_array.astype(np.float32)
301
+ elif file_ext == '.npy':
302
+ # NumPy file
303
+ audio_array = np.load(audio_path)
304
+ return audio_array.astype(np.float32)
305
+ else:
306
+ raise ValueError(
307
+ f"Unsupported file format: {file_ext}. "
308
+ f"Supported formats: .wav, .mp3, .flac, .m4a, .ogg, .pt, .npy, .npz"
309
+ )
310
+
311
+ def preprocess_audio(
312
+ self,
313
+ audio_path_or_array: Union[str, np.ndarray],
314
+ normalize: Optional[bool] = None,
315
+ ) -> np.ndarray:
316
+ """
317
+ Convenience method to preprocess audio from file path or array.
318
+ This method is kept for backward compatibility but __call__ is recommended.
319
+
320
+ Args:
321
+ audio_path_or_array: Path to audio file or numpy array
322
+ normalize: Whether to normalize (overrides default setting)
323
+
324
+ Returns:
325
+ np.ndarray: Preprocessed audio array
326
+ """
327
+ if isinstance(audio_path_or_array, str):
328
+ audio_array = self._load_audio_from_path(audio_path_or_array)
329
+ else:
330
+ audio_array = np.array(audio_path_or_array, dtype=np.float32)
331
+
332
+ # Override normalization setting if specified
333
+ original_normalize = self.normalize_audio
334
+ if normalize is not None:
335
+ self.normalize_audio = normalize
336
+
337
+ try:
338
+ processed = self._process_single_audio(audio_array)
339
+ finally:
340
+ # Restore original setting
341
+ self.normalize_audio = original_normalize
342
+
343
+ return processed
344
+
345
+ # Override to_dict method for configuration saving
346
+ def to_dict(self) -> Dict[str, Any]:
347
+ """
348
+ Convert the object to a dict containing all attributes needed for serialization.
349
+ """
350
+ return self.feature_extractor_dict
351
+
352
+ def save_audio(
353
+ self,
354
+ audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
355
+ output_path: str = "output.wav",
356
+ sampling_rate: Optional[int] = None,
357
+ normalize: bool = False,
358
+ batch_prefix: str = "audio_",
359
+ ):
360
+ """
361
+ Save audio data to WAV file(s).
362
+
363
+ Args:
364
+ audio: Audio data to save. Can be:
365
+ - torch.Tensor: PyTorch tensor with shape (B, C, T) or (B, T) or (T)
366
+ - np.ndarray: NumPy array with shape (B, C, T) or (B, T) or (T)
367
+ - List of tensors or arrays
368
+ output_path: Path where to save the audio. If saving multiple files,
369
+ this is treated as a directory and individual files will be saved inside.
370
+ sampling_rate: Sampling rate for the saved audio. Defaults to the processor's rate.
371
+ normalize: Whether to normalize audio before saving.
372
+ batch_prefix: Prefix for batch files when saving multiple audios.
373
+
374
+ Returns:
375
+ List[str]: Paths to the saved audio files.
376
+ """
377
+ if sampling_rate is None:
378
+ sampling_rate = self.sampling_rate
379
+
380
+ try:
381
+ import soundfile as sf
382
+ except ImportError:
383
+ raise ImportError(
384
+ "soundfile is required to save audio files. "
385
+ "Install it with: pip install soundfile"
386
+ )
387
+
388
+ # Ensure audio is in the right format
389
+ if isinstance(audio, torch.Tensor):
390
+ # Convert PyTorch tensor to numpy
391
+ audio_np = audio.float().detach().cpu().numpy()
392
+ elif isinstance(audio, np.ndarray):
393
+ audio_np = audio
394
+ elif isinstance(audio, list):
395
+ # Handle list of tensors or arrays
396
+ if all(isinstance(a, torch.Tensor) for a in audio):
397
+ audio_np = [a.float().detach().cpu().numpy() for a in audio]
398
+ else:
399
+ audio_np = audio
400
+ else:
401
+ raise ValueError(f"Unsupported audio type: {type(audio)}")
402
+
403
+ saved_paths = []
404
+
405
+ # Handle based on shape or type
406
+ if isinstance(audio_np, list):
407
+ # Multiple separate audios to save
408
+ output_dir = output_path
409
+
410
+ # Ensure output directory exists
411
+ os.makedirs(output_dir, exist_ok=True)
412
+
413
+ # Save each audio
414
+ for i, audio_item in enumerate(audio_np):
415
+ audio_item = self._prepare_audio_for_save(audio_item, normalize)
416
+ file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav")
417
+ sf.write(file_path, audio_item, sampling_rate)
418
+ saved_paths.append(file_path)
419
+
420
+ else:
421
+ # Handle different dimensions
422
+ if len(audio_np.shape) >= 3: # (B, C, T) or similar
423
+ # Get batch size
424
+ batch_size = audio_np.shape[0]
425
+
426
+ if batch_size > 1:
427
+ # Multiple audios in a batch
428
+ output_dir = output_path
429
+
430
+ # Ensure output directory exists
431
+ os.makedirs(output_dir, exist_ok=True)
432
+
433
+ # Save each audio in the batch
434
+ for i in range(batch_size):
435
+ # Extract single audio and remove channel dim if present
436
+ single_audio = audio_np[i]
437
+ if len(single_audio.shape) > 1:
438
+ if single_audio.shape[0] == 1: # (1, T)
439
+ single_audio = single_audio.squeeze(0)
440
+
441
+ single_audio = self._prepare_audio_for_save(single_audio, normalize)
442
+ file_path = os.path.join(output_dir, f"{batch_prefix}{i}.wav")
443
+ sf.write(file_path, single_audio, sampling_rate)
444
+ saved_paths.append(file_path)
445
+ else:
446
+ # Single audio with batch and channel dims
447
+ audio_item = audio_np.squeeze() # Remove batch and channel dimensions
448
+ audio_item = self._prepare_audio_for_save(audio_item, normalize)
449
+ sf.write(output_path, audio_item, sampling_rate)
450
+ saved_paths.append(output_path)
451
+ else:
452
+ # Single audio without batch dimension
453
+ audio_item = self._prepare_audio_for_save(audio_np, normalize)
454
+ sf.write(output_path, audio_item, sampling_rate)
455
+ saved_paths.append(output_path)
456
+
457
+ return saved_paths
458
+
459
+ def _prepare_audio_for_save(self, audio: np.ndarray, normalize: bool) -> np.ndarray:
460
+ """
461
+ Prepare audio for saving by ensuring it's the right shape and optionally normalizing.
462
+
463
+ Args:
464
+ audio: Audio data as numpy array
465
+ normalize: Whether to normalize audio
466
+
467
+ Returns:
468
+ np.ndarray: Processed audio ready for saving
469
+ """
470
+ # Ensure right dimensionality
471
+ if len(audio.shape) > 1 and audio.shape[0] == 1: # (1, T)
472
+ audio = audio.squeeze(0)
473
+
474
+ # Normalize if requested
475
+ if normalize:
476
+ max_val = np.abs(audio).max()
477
+ if max_val > 0:
478
+ audio = audio / max_val
479
+
480
+ return audio
481
+
482
+
483
+ __all__ = ["VibeVoiceTokenizerProcessor", "AudioNormalizer"]
schedule/__init__.py ADDED
File without changes
schedule/dpm_solver.py ADDED
@@ -0,0 +1,1065 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
16
+
17
+ import math
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import torch
22
+
23
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
+ from diffusers.utils import deprecate
25
+ from diffusers.utils.torch_utils import randn_tensor
26
+ from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
+
28
+ def betas_for_alpha_bar(
29
+ num_diffusion_timesteps,
30
+ max_beta=0.999,
31
+ alpha_transform_type="cosine",
32
+ ):
33
+ """
34
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
35
+ (1-beta) over time from t = [0,1].
36
+
37
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
38
+ to that part of the diffusion process.
39
+
40
+
41
+ Args:
42
+ num_diffusion_timesteps (`int`): the number of betas to produce.
43
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
44
+ prevent singularities.
45
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
46
+ Choose from `cosine` or `exp`
47
+
48
+ Returns:
49
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
50
+ """
51
+ if alpha_transform_type == "cosine":
52
+
53
+ def alpha_bar_fn(t):
54
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
55
+ # return math.cos(t * math.pi / 2 * 0.95) ** 2
56
+
57
+ elif alpha_transform_type == "exp":
58
+
59
+ def alpha_bar_fn(t):
60
+ return math.exp(t * -12.0)
61
+
62
+ elif alpha_transform_type == "cauchy":
63
+ # µ + γ tan (π (0.5 - x)) γ = 1, µ = 3
64
+ # alpha^2 = 1-1/(exp(λ)+1)
65
+ def alpha_bar_fn(t, gamma=1, mu=3):
66
+ snr = mu + gamma * math.tan(math.pi * (0.5 - t) * 0.9)
67
+ return 1 - 1 / (math.exp(snr) + 1.1)
68
+
69
+ elif alpha_transform_type == "laplace":
70
+ # µ − bsgn(0.5 − t) log(1 − 2|t − 0.5|) µ = 0, b = 1
71
+ def alpha_bar_fn(t, mu=0, b=1):
72
+ snr = mu - b * math.copysign(1, 0.5 - t) * math.log(1 - 2 * abs(t - 0.5) * 0.98)
73
+ return 1 - 1 / (math.exp(snr) + 1.02)
74
+
75
+ else:
76
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
77
+
78
+ betas = []
79
+ for i in range(num_diffusion_timesteps):
80
+ t1 = i / num_diffusion_timesteps
81
+ t2 = (i + 1) / num_diffusion_timesteps
82
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
83
+ return torch.tensor(betas, dtype=torch.float32)
84
+
85
+
86
+ # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
87
+ def rescale_zero_terminal_snr(betas):
88
+ """
89
+ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
90
+
91
+
92
+ Args:
93
+ betas (`torch.Tensor`):
94
+ the betas that the scheduler is being initialized with.
95
+
96
+ Returns:
97
+ `torch.Tensor`: rescaled betas with zero terminal SNR
98
+ """
99
+ # Convert betas to alphas_bar_sqrt
100
+ alphas = 1.0 - betas
101
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
102
+ alphas_bar_sqrt = alphas_cumprod.sqrt()
103
+
104
+ # Store old values.
105
+ alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
106
+ alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
107
+
108
+ # Shift so the last timestep is zero.
109
+ alphas_bar_sqrt -= alphas_bar_sqrt_T
110
+
111
+ # Scale so the first timestep is back to the old value.
112
+ alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
113
+
114
+ # Convert alphas_bar_sqrt to betas
115
+ alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
116
+ alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
117
+ alphas = torch.cat([alphas_bar[0:1], alphas])
118
+ betas = 1 - alphas
119
+
120
+ return betas
121
+
122
+ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
123
+ """
124
+ `DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
125
+
126
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
127
+ methods the library implements for all schedulers such as loading and saving.
128
+
129
+ Args:
130
+ num_train_timesteps (`int`, defaults to 1000):
131
+ The number of diffusion steps to train the model.
132
+ beta_start (`float`, defaults to 0.0001):
133
+ The starting `beta` value of inference.
134
+ beta_end (`float`, defaults to 0.02):
135
+ The final `beta` value.
136
+ beta_schedule (`str`, defaults to `"linear"`):
137
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
138
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
139
+ trained_betas (`np.ndarray`, *optional*):
140
+ Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
141
+ solver_order (`int`, defaults to 2):
142
+ The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
143
+ sampling, and `solver_order=3` for unconditional sampling.
144
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
145
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
146
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
147
+ Video](https://imagen.research.google/video/paper.pdf) paper).
148
+ thresholding (`bool`, defaults to `False`):
149
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
150
+ as Stable Diffusion.
151
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
152
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
153
+ sample_max_value (`float`, defaults to 1.0):
154
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
155
+ `algorithm_type="dpmsolver++"`.
156
+ algorithm_type (`str`, defaults to `dpmsolver++`):
157
+ Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
158
+ `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
159
+ paper, and the `dpmsolver++` type implements the algorithms in the
160
+ [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
161
+ `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
162
+ solver_type (`str`, defaults to `midpoint`):
163
+ Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
164
+ sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
165
+ lower_order_final (`bool`, defaults to `True`):
166
+ Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
167
+ stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
168
+ euler_at_final (`bool`, defaults to `False`):
169
+ Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
170
+ richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
171
+ steps, but sometimes may result in blurring.
172
+ use_karras_sigmas (`bool`, *optional*, defaults to `False`):
173
+ Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
174
+ the sigmas are determined according to a sequence of noise levels {σi}.
175
+ use_lu_lambdas (`bool`, *optional*, defaults to `False`):
176
+ Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
177
+ the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
178
+ `lambda(t)`.
179
+ final_sigmas_type (`str`, defaults to `"zero"`):
180
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
181
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
182
+ lambda_min_clipped (`float`, defaults to `-inf`):
183
+ Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
184
+ cosine (`squaredcos_cap_v2`) noise schedule.
185
+ variance_type (`str`, *optional*):
186
+ Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
187
+ contains the predicted Gaussian variance.
188
+ timestep_spacing (`str`, defaults to `"linspace"`):
189
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
190
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
191
+ steps_offset (`int`, defaults to 0):
192
+ An offset added to the inference steps, as required by some model families.
193
+ rescale_betas_zero_snr (`bool`, defaults to `False`):
194
+ Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
195
+ dark samples instead of limiting it to samples with medium brightness. Loosely related to
196
+ [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
197
+ """
198
+
199
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
200
+ order = 1
201
+
202
+ @register_to_config
203
+ def __init__(
204
+ self,
205
+ num_train_timesteps: int = 1000,
206
+ beta_start: float = 0.0001,
207
+ beta_end: float = 0.02,
208
+ beta_schedule: str = "linear",
209
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
210
+ solver_order: int = 2,
211
+ prediction_type: str = "epsilon",
212
+ thresholding: bool = False,
213
+ dynamic_thresholding_ratio: float = 0.995,
214
+ sample_max_value: float = 1.0,
215
+ algorithm_type: str = "dpmsolver++",
216
+ solver_type: str = "midpoint",
217
+ lower_order_final: bool = True,
218
+ euler_at_final: bool = False,
219
+ use_karras_sigmas: Optional[bool] = False,
220
+ use_lu_lambdas: Optional[bool] = False,
221
+ final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
222
+ lambda_min_clipped: float = -float("inf"),
223
+ variance_type: Optional[str] = None,
224
+ timestep_spacing: str = "linspace",
225
+ steps_offset: int = 0,
226
+ rescale_betas_zero_snr: bool = False,
227
+ ):
228
+ if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
229
+ deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
230
+ deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
231
+
232
+ if trained_betas is not None:
233
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
234
+ elif beta_schedule == "linear":
235
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
236
+ elif beta_schedule == "scaled_linear":
237
+ # this schedule is very specific to the latent diffusion model.
238
+ self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
239
+ elif beta_schedule == "squaredcos_cap_v2" or beta_schedule == "cosine":
240
+ # Glide cosine schedule
241
+ self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
242
+ elif beta_schedule == "cauchy":
243
+ self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cauchy")
244
+ elif beta_schedule == "laplace":
245
+ self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="laplace")
246
+ else:
247
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
248
+
249
+ if rescale_betas_zero_snr:
250
+ self.betas = rescale_zero_terminal_snr(self.betas)
251
+
252
+ self.alphas = 1.0 - self.betas
253
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
254
+
255
+ if rescale_betas_zero_snr:
256
+ # Close to 0 without being 0 so first sigma is not inf
257
+ # FP16 smallest positive subnormal works well here
258
+ self.alphas_cumprod[-1] = 2**-24
259
+
260
+ # Currently we only support VP-type noise schedule
261
+ self.alpha_t = torch.sqrt(self.alphas_cumprod)
262
+ self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
263
+ self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
264
+ self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
265
+
266
+ # standard deviation of the initial noise distribution
267
+ self.init_noise_sigma = 1.0
268
+
269
+ # settings for DPM-Solver
270
+ if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
271
+ if algorithm_type == "deis":
272
+ self.register_to_config(algorithm_type="dpmsolver++")
273
+ else:
274
+ raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
275
+
276
+ if solver_type not in ["midpoint", "heun"]:
277
+ if solver_type in ["logrho", "bh1", "bh2"]:
278
+ self.register_to_config(solver_type="midpoint")
279
+ else:
280
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
281
+
282
+ if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
283
+ raise ValueError(
284
+ f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
285
+ )
286
+
287
+ # setable values
288
+ self.num_inference_steps = None
289
+ timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
290
+ self.timesteps = torch.from_numpy(timesteps)
291
+ self.model_outputs = [None] * solver_order
292
+ self.lower_order_nums = 0
293
+ self._step_index = None
294
+ self._begin_index = None
295
+ self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
296
+
297
+ @property
298
+ def step_index(self):
299
+ """
300
+ The index counter for current timestep. It will increase 1 after each scheduler step.
301
+ """
302
+ return self._step_index
303
+
304
+ @property
305
+ def begin_index(self):
306
+ """
307
+ The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
308
+ """
309
+ return self._begin_index
310
+
311
+ def set_begin_index(self, begin_index: int = 0):
312
+ """
313
+ Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
314
+
315
+ Args:
316
+ begin_index (`int`):
317
+ The begin index for the scheduler.
318
+ """
319
+ self._begin_index = begin_index
320
+
321
+ def set_timesteps(
322
+ self,
323
+ num_inference_steps: int = None,
324
+ device: Union[str, torch.device] = None,
325
+ timesteps: Optional[List[int]] = None,
326
+ ):
327
+ """
328
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
329
+
330
+ Args:
331
+ num_inference_steps (`int`):
332
+ The number of diffusion steps used when generating samples with a pre-trained model.
333
+ device (`str` or `torch.device`, *optional*):
334
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
335
+ timesteps (`List[int]`, *optional*):
336
+ Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
337
+ based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
338
+ must be `None`, and `timestep_spacing` attribute will be ignored.
339
+ """
340
+ if num_inference_steps is None and timesteps is None:
341
+ raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
342
+ if num_inference_steps is not None and timesteps is not None:
343
+ raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
344
+ if timesteps is not None and self.config.use_karras_sigmas:
345
+ raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
346
+ if timesteps is not None and self.config.use_lu_lambdas:
347
+ raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`")
348
+
349
+ if timesteps is not None:
350
+ timesteps = np.array(timesteps).astype(np.int64)
351
+ else:
352
+ # Clipping the minimum of all lambda(t) for numerical stability.
353
+ # This is critical for cosine (squaredcos_cap_v2) noise schedule.
354
+ clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
355
+ last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
356
+
357
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
358
+ if self.config.timestep_spacing == "linspace":
359
+ timesteps = (
360
+ np.linspace(0, last_timestep - 1, num_inference_steps + 1)
361
+ .round()[::-1][:-1]
362
+ .copy()
363
+ .astype(np.int64)
364
+ )
365
+ elif self.config.timestep_spacing == "leading":
366
+ step_ratio = last_timestep // (num_inference_steps + 1)
367
+ # creates integer timesteps by multiplying by ratio
368
+ # casting to int to avoid issues when num_inference_step is power of 3
369
+ timesteps = (
370
+ (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
371
+ )
372
+ timesteps += self.config.steps_offset
373
+ elif self.config.timestep_spacing == "trailing":
374
+ step_ratio = self.config.num_train_timesteps / num_inference_steps
375
+ # creates integer timesteps by multiplying by ratio
376
+ # casting to int to avoid issues when num_inference_step is power of 3
377
+ timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
378
+ timesteps -= 1
379
+ else:
380
+ raise ValueError(
381
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
382
+ )
383
+
384
+ sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
385
+ log_sigmas = np.log(sigmas)
386
+
387
+ if self.config.use_karras_sigmas:
388
+ sigmas = np.flip(sigmas).copy()
389
+ sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
390
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
391
+ elif self.config.use_lu_lambdas:
392
+ lambdas = np.flip(log_sigmas.copy())
393
+ lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
394
+ sigmas = np.exp(lambdas)
395
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
396
+ else:
397
+ sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
398
+
399
+ if self.config.final_sigmas_type == "sigma_min":
400
+ sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
401
+ elif self.config.final_sigmas_type == "zero":
402
+ sigma_last = 0
403
+ else:
404
+ raise ValueError(
405
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
406
+ )
407
+
408
+ sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
409
+
410
+ self.sigmas = torch.from_numpy(sigmas)
411
+ self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
412
+
413
+ self.num_inference_steps = len(timesteps)
414
+
415
+ self.model_outputs = [
416
+ None,
417
+ ] * self.config.solver_order
418
+ self.lower_order_nums = 0
419
+
420
+ # add an index counter for schedulers that allow duplicated timesteps
421
+ self._step_index = None
422
+ self._begin_index = None
423
+ self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
424
+
425
+ # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
426
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
427
+ """
428
+ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
429
+ prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
430
+ s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
431
+ pixels from saturation at each step. We find that dynamic thresholding results in significantly better
432
+ photorealism as well as better image-text alignment, especially when using very large guidance weights."
433
+
434
+ https://arxiv.org/abs/2205.11487
435
+ """
436
+ dtype = sample.dtype
437
+ batch_size, channels, *remaining_dims = sample.shape
438
+
439
+ if dtype not in (torch.float32, torch.float64):
440
+ sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
441
+
442
+ # Flatten sample for doing quantile calculation along each image
443
+ sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
444
+
445
+ abs_sample = sample.abs() # "a certain percentile absolute pixel value"
446
+
447
+ s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
448
+ s = torch.clamp(
449
+ s, min=1, max=self.config.sample_max_value
450
+ ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
451
+ s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
452
+ sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
453
+
454
+ sample = sample.reshape(batch_size, channels, *remaining_dims)
455
+ sample = sample.to(dtype)
456
+
457
+ return sample
458
+
459
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
460
+ def _sigma_to_t(self, sigma, log_sigmas):
461
+ # get log sigma
462
+ log_sigma = np.log(np.maximum(sigma, 1e-10))
463
+
464
+ # get distribution
465
+ dists = log_sigma - log_sigmas[:, np.newaxis]
466
+
467
+ # get sigmas range
468
+ low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
469
+ high_idx = low_idx + 1
470
+
471
+ low = log_sigmas[low_idx]
472
+ high = log_sigmas[high_idx]
473
+
474
+ # interpolate sigmas
475
+ w = (low - log_sigma) / (low - high)
476
+ w = np.clip(w, 0, 1)
477
+
478
+ # transform interpolation to time range
479
+ t = (1 - w) * low_idx + w * high_idx
480
+ t = t.reshape(sigma.shape)
481
+ return t
482
+
483
+ def _sigma_to_alpha_sigma_t(self, sigma):
484
+ alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
485
+ sigma_t = sigma * alpha_t
486
+
487
+ return alpha_t, sigma_t
488
+
489
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
490
+ def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
491
+ """Constructs the noise schedule of Karras et al. (2022)."""
492
+
493
+ # Hack to make sure that other schedulers which copy this function don't break
494
+ # TODO: Add this logic to the other schedulers
495
+ if hasattr(self.config, "sigma_min"):
496
+ sigma_min = self.config.sigma_min
497
+ else:
498
+ sigma_min = None
499
+
500
+ if hasattr(self.config, "sigma_max"):
501
+ sigma_max = self.config.sigma_max
502
+ else:
503
+ sigma_max = None
504
+
505
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
506
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
507
+
508
+ rho = 7.0 # 7.0 is the value used in the paper
509
+ ramp = np.linspace(0, 1, num_inference_steps)
510
+ min_inv_rho = sigma_min ** (1 / rho)
511
+ max_inv_rho = sigma_max ** (1 / rho)
512
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
513
+ return sigmas
514
+
515
+ def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor:
516
+ """Constructs the noise schedule of Lu et al. (2022)."""
517
+
518
+ lambda_min: float = in_lambdas[-1].item()
519
+ lambda_max: float = in_lambdas[0].item()
520
+
521
+ rho = 1.0 # 1.0 is the value used in the paper
522
+ ramp = np.linspace(0, 1, num_inference_steps)
523
+ min_inv_rho = lambda_min ** (1 / rho)
524
+ max_inv_rho = lambda_max ** (1 / rho)
525
+ lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
526
+ return lambdas
527
+
528
+ def convert_model_output(
529
+ self,
530
+ model_output: torch.Tensor,
531
+ *args,
532
+ sample: torch.Tensor = None,
533
+ **kwargs,
534
+ ) -> torch.Tensor:
535
+ """
536
+ Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
537
+ designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
538
+ integral of the data prediction model.
539
+
540
+ <Tip>
541
+
542
+ The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
543
+ prediction and data prediction models.
544
+
545
+ </Tip>
546
+
547
+ Args:
548
+ model_output (`torch.Tensor`):
549
+ The direct output from the learned diffusion model.
550
+ sample (`torch.Tensor`):
551
+ A current instance of a sample created by the diffusion process.
552
+
553
+ Returns:
554
+ `torch.Tensor`:
555
+ The converted model output.
556
+ """
557
+ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
558
+ if sample is None:
559
+ if len(args) > 1:
560
+ sample = args[1]
561
+ else:
562
+ raise ValueError("missing `sample` as a required keyward argument")
563
+ if timestep is not None:
564
+ deprecate(
565
+ "timesteps",
566
+ "1.0.0",
567
+ "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
568
+ )
569
+
570
+ # DPM-Solver++ needs to solve an integral of the data prediction model.
571
+ if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
572
+ if self.config.prediction_type == "epsilon":
573
+ # DPM-Solver and DPM-Solver++ only need the "mean" output.
574
+ if self.config.variance_type in ["learned", "learned_range"]:
575
+ model_output = model_output[:, :3]
576
+ sigma = self.sigmas[self.step_index]
577
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
578
+ x0_pred = (sample - sigma_t * model_output) / alpha_t
579
+ elif self.config.prediction_type == "sample":
580
+ x0_pred = model_output
581
+ elif self.config.prediction_type == "v_prediction":
582
+ sigma = self.sigmas[self.step_index]
583
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
584
+ x0_pred = alpha_t * sample - sigma_t * model_output
585
+ else:
586
+ raise ValueError(
587
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
588
+ " `v_prediction` for the DPMSolverMultistepScheduler."
589
+ )
590
+
591
+ if self.config.thresholding:
592
+ x0_pred = self._threshold_sample(x0_pred)
593
+
594
+ return x0_pred
595
+
596
+ # DPM-Solver needs to solve an integral of the noise prediction model.
597
+ elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
598
+ if self.config.prediction_type == "epsilon":
599
+ # DPM-Solver and DPM-Solver++ only need the "mean" output.
600
+ if self.config.variance_type in ["learned", "learned_range"]:
601
+ epsilon = model_output[:, :3]
602
+ else:
603
+ epsilon = model_output
604
+ elif self.config.prediction_type == "sample":
605
+ sigma = self.sigmas[self.step_index]
606
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
607
+ epsilon = (sample - alpha_t * model_output) / sigma_t
608
+ elif self.config.prediction_type == "v_prediction":
609
+ sigma = self.sigmas[self.step_index]
610
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
611
+ epsilon = alpha_t * model_output + sigma_t * sample
612
+ else:
613
+ raise ValueError(
614
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
615
+ " `v_prediction` for the DPMSolverMultistepScheduler."
616
+ )
617
+
618
+ if self.config.thresholding:
619
+ sigma = self.sigmas[self.step_index]
620
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
621
+ x0_pred = (sample - sigma_t * epsilon) / alpha_t
622
+ x0_pred = self._threshold_sample(x0_pred)
623
+ epsilon = (sample - alpha_t * x0_pred) / sigma_t
624
+
625
+ return epsilon
626
+
627
+ def dpm_solver_first_order_update(
628
+ self,
629
+ model_output: torch.Tensor,
630
+ *args,
631
+ sample: torch.Tensor = None,
632
+ noise: Optional[torch.Tensor] = None,
633
+ **kwargs,
634
+ ) -> torch.Tensor:
635
+ """
636
+ One step for the first-order DPMSolver (equivalent to DDIM).
637
+
638
+ Args:
639
+ model_output (`torch.Tensor`):
640
+ The direct output from the learned diffusion model.
641
+ sample (`torch.Tensor`):
642
+ A current instance of a sample created by the diffusion process.
643
+
644
+ Returns:
645
+ `torch.Tensor`:
646
+ The sample tensor at the previous timestep.
647
+ """
648
+ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
649
+ prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
650
+ if sample is None:
651
+ if len(args) > 2:
652
+ sample = args[2]
653
+ else:
654
+ raise ValueError(" missing `sample` as a required keyward argument")
655
+ if timestep is not None:
656
+ deprecate(
657
+ "timesteps",
658
+ "1.0.0",
659
+ "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
660
+ )
661
+
662
+ if prev_timestep is not None:
663
+ deprecate(
664
+ "prev_timestep",
665
+ "1.0.0",
666
+ "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
667
+ )
668
+
669
+ sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
670
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
671
+ alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
672
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
673
+ lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
674
+
675
+ h = lambda_t - lambda_s
676
+ if self.config.algorithm_type == "dpmsolver++":
677
+ x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
678
+ elif self.config.algorithm_type == "dpmsolver":
679
+ x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
680
+ elif self.config.algorithm_type == "sde-dpmsolver++":
681
+ assert noise is not None
682
+ x_t = (
683
+ (sigma_t / sigma_s * torch.exp(-h)) * sample
684
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
685
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
686
+ )
687
+ elif self.config.algorithm_type == "sde-dpmsolver":
688
+ assert noise is not None
689
+ x_t = (
690
+ (alpha_t / alpha_s) * sample
691
+ - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
692
+ + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
693
+ )
694
+ return x_t
695
+
696
+ def multistep_dpm_solver_second_order_update(
697
+ self,
698
+ model_output_list: List[torch.Tensor],
699
+ *args,
700
+ sample: torch.Tensor = None,
701
+ noise: Optional[torch.Tensor] = None,
702
+ **kwargs,
703
+ ) -> torch.Tensor:
704
+ """
705
+ One step for the second-order multistep DPMSolver.
706
+
707
+ Args:
708
+ model_output_list (`List[torch.Tensor]`):
709
+ The direct outputs from learned diffusion model at current and latter timesteps.
710
+ sample (`torch.Tensor`):
711
+ A current instance of a sample created by the diffusion process.
712
+
713
+ Returns:
714
+ `torch.Tensor`:
715
+ The sample tensor at the previous timestep.
716
+ """
717
+ timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
718
+ prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
719
+ if sample is None:
720
+ if len(args) > 2:
721
+ sample = args[2]
722
+ else:
723
+ raise ValueError(" missing `sample` as a required keyward argument")
724
+ if timestep_list is not None:
725
+ deprecate(
726
+ "timestep_list",
727
+ "1.0.0",
728
+ "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
729
+ )
730
+
731
+ if prev_timestep is not None:
732
+ deprecate(
733
+ "prev_timestep",
734
+ "1.0.0",
735
+ "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
736
+ )
737
+
738
+ sigma_t, sigma_s0, sigma_s1 = (
739
+ self.sigmas[self.step_index + 1],
740
+ self.sigmas[self.step_index],
741
+ self.sigmas[self.step_index - 1],
742
+ )
743
+
744
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
745
+ alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
746
+ alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
747
+
748
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
749
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
750
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
751
+
752
+ m0, m1 = model_output_list[-1], model_output_list[-2]
753
+
754
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
755
+ r0 = h_0 / h
756
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
757
+ if self.config.algorithm_type == "dpmsolver++":
758
+ # See https://arxiv.org/abs/2211.01095 for detailed derivations
759
+ if self.config.solver_type == "midpoint":
760
+ x_t = (
761
+ (sigma_t / sigma_s0) * sample
762
+ - (alpha_t * (torch.exp(-h) - 1.0)) * D0
763
+ - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
764
+ )
765
+ elif self.config.solver_type == "heun":
766
+ x_t = (
767
+ (sigma_t / sigma_s0) * sample
768
+ - (alpha_t * (torch.exp(-h) - 1.0)) * D0
769
+ + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
770
+ )
771
+ elif self.config.algorithm_type == "dpmsolver":
772
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
773
+ if self.config.solver_type == "midpoint":
774
+ x_t = (
775
+ (alpha_t / alpha_s0) * sample
776
+ - (sigma_t * (torch.exp(h) - 1.0)) * D0
777
+ - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
778
+ )
779
+ elif self.config.solver_type == "heun":
780
+ x_t = (
781
+ (alpha_t / alpha_s0) * sample
782
+ - (sigma_t * (torch.exp(h) - 1.0)) * D0
783
+ - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
784
+ )
785
+ elif self.config.algorithm_type == "sde-dpmsolver++":
786
+ assert noise is not None
787
+ if self.config.solver_type == "midpoint":
788
+ x_t = (
789
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
790
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
791
+ + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
792
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
793
+ )
794
+ elif self.config.solver_type == "heun":
795
+ x_t = (
796
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
797
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
798
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
799
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
800
+ )
801
+ elif self.config.algorithm_type == "sde-dpmsolver":
802
+ assert noise is not None
803
+ if self.config.solver_type == "midpoint":
804
+ x_t = (
805
+ (alpha_t / alpha_s0) * sample
806
+ - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
807
+ - (sigma_t * (torch.exp(h) - 1.0)) * D1
808
+ + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
809
+ )
810
+ elif self.config.solver_type == "heun":
811
+ x_t = (
812
+ (alpha_t / alpha_s0) * sample
813
+ - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
814
+ - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
815
+ + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
816
+ )
817
+ return x_t
818
+
819
+ def multistep_dpm_solver_third_order_update(
820
+ self,
821
+ model_output_list: List[torch.Tensor],
822
+ *args,
823
+ sample: torch.Tensor = None,
824
+ **kwargs,
825
+ ) -> torch.Tensor:
826
+ """
827
+ One step for the third-order multistep DPMSolver.
828
+
829
+ Args:
830
+ model_output_list (`List[torch.Tensor]`):
831
+ The direct outputs from learned diffusion model at current and latter timesteps.
832
+ sample (`torch.Tensor`):
833
+ A current instance of a sample created by diffusion process.
834
+
835
+ Returns:
836
+ `torch.Tensor`:
837
+ The sample tensor at the previous timestep.
838
+ """
839
+
840
+ timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
841
+ prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
842
+ if sample is None:
843
+ if len(args) > 2:
844
+ sample = args[2]
845
+ else:
846
+ raise ValueError(" missing`sample` as a required keyward argument")
847
+ if timestep_list is not None:
848
+ deprecate(
849
+ "timestep_list",
850
+ "1.0.0",
851
+ "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
852
+ )
853
+
854
+ if prev_timestep is not None:
855
+ deprecate(
856
+ "prev_timestep",
857
+ "1.0.0",
858
+ "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
859
+ )
860
+
861
+ sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
862
+ self.sigmas[self.step_index + 1],
863
+ self.sigmas[self.step_index],
864
+ self.sigmas[self.step_index - 1],
865
+ self.sigmas[self.step_index - 2],
866
+ )
867
+
868
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
869
+ alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
870
+ alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
871
+ alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
872
+
873
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
874
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
875
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
876
+ lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
877
+
878
+ m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
879
+
880
+ h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
881
+ r0, r1 = h_0 / h, h_1 / h
882
+ D0 = m0
883
+ D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
884
+ D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
885
+ D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
886
+ if self.config.algorithm_type == "dpmsolver++":
887
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
888
+ x_t = (
889
+ (sigma_t / sigma_s0) * sample
890
+ - (alpha_t * (torch.exp(-h) - 1.0)) * D0
891
+ + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
892
+ - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
893
+ )
894
+ elif self.config.algorithm_type == "dpmsolver":
895
+ # See https://arxiv.org/abs/2206.00927 for detailed derivations
896
+ x_t = (
897
+ (alpha_t / alpha_s0) * sample
898
+ - (sigma_t * (torch.exp(h) - 1.0)) * D0
899
+ - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
900
+ - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
901
+ )
902
+ return x_t
903
+
904
+ def index_for_timestep(self, timestep, schedule_timesteps=None):
905
+ if schedule_timesteps is None:
906
+ schedule_timesteps = self.timesteps
907
+
908
+ index_candidates = (schedule_timesteps == timestep).nonzero()
909
+
910
+ if len(index_candidates) == 0:
911
+ step_index = len(self.timesteps) - 1
912
+ # The sigma index that is taken for the **very** first `step`
913
+ # is always the second index (or the last index if there is only 1)
914
+ # This way we can ensure we don't accidentally skip a sigma in
915
+ # case we start in the middle of the denoising schedule (e.g. for image-to-image)
916
+ elif len(index_candidates) > 1:
917
+ step_index = index_candidates[1].item()
918
+ else:
919
+ step_index = index_candidates[0].item()
920
+
921
+ return step_index
922
+
923
+ def _init_step_index(self, timestep):
924
+ """
925
+ Initialize the step_index counter for the scheduler.
926
+ """
927
+
928
+ if self.begin_index is None:
929
+ if isinstance(timestep, torch.Tensor):
930
+ timestep = timestep.to(self.timesteps.device)
931
+ self._step_index = self.index_for_timestep(timestep)
932
+ else:
933
+ self._step_index = self._begin_index
934
+
935
+ def step(
936
+ self,
937
+ model_output: torch.Tensor,
938
+ timestep: int,
939
+ sample: torch.Tensor,
940
+ generator=None,
941
+ variance_noise: Optional[torch.Tensor] = None,
942
+ return_dict: bool = True,
943
+ ) -> Union[SchedulerOutput, Tuple]:
944
+ """
945
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
946
+ the multistep DPMSolver.
947
+
948
+ Args:
949
+ model_output (`torch.Tensor`):
950
+ The direct output from learned diffusion model.
951
+ timestep (`int`):
952
+ The current discrete timestep in the diffusion chain.
953
+ sample (`torch.Tensor`):
954
+ A current instance of a sample created by the diffusion process.
955
+ generator (`torch.Generator`, *optional*):
956
+ A random number generator.
957
+ variance_noise (`torch.Tensor`):
958
+ Alternative to generating noise with `generator` by directly providing the noise for the variance
959
+ itself. Useful for methods such as [`LEdits++`].
960
+ return_dict (`bool`):
961
+ Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
962
+
963
+ Returns:
964
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
965
+ If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
966
+ tuple is returned where the first element is the sample tensor.
967
+
968
+ """
969
+ if self.num_inference_steps is None:
970
+ raise ValueError(
971
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
972
+ )
973
+
974
+ if self.step_index is None:
975
+ self._init_step_index(timestep)
976
+
977
+ # Improve numerical stability for small number of steps
978
+ lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
979
+ self.config.euler_at_final
980
+ or (self.config.lower_order_final and len(self.timesteps) < 15)
981
+ or self.config.final_sigmas_type == "zero"
982
+ )
983
+ lower_order_second = (
984
+ (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
985
+ )
986
+
987
+ model_output = self.convert_model_output(model_output, sample=sample)
988
+ for i in range(self.config.solver_order - 1):
989
+ self.model_outputs[i] = self.model_outputs[i + 1]
990
+ self.model_outputs[-1] = model_output
991
+
992
+ # Upcast to avoid precision issues when computing prev_sample
993
+ sample = sample.to(torch.float32)
994
+ if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
995
+ noise = randn_tensor(
996
+ model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
997
+ )
998
+ elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
999
+ noise = variance_noise.to(device=model_output.device, dtype=torch.float32)
1000
+ else:
1001
+ noise = None
1002
+
1003
+ if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
1004
+ prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
1005
+ elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
1006
+ prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
1007
+ else:
1008
+ prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
1009
+
1010
+ if self.lower_order_nums < self.config.solver_order:
1011
+ self.lower_order_nums += 1
1012
+
1013
+ # Cast sample back to expected dtype
1014
+ prev_sample = prev_sample.to(model_output.dtype)
1015
+
1016
+ # upon completion increase step index by one
1017
+ self._step_index += 1
1018
+
1019
+ if not return_dict:
1020
+ return (prev_sample,)
1021
+
1022
+ return SchedulerOutput(prev_sample=prev_sample)
1023
+
1024
+ def add_noise(
1025
+ self,
1026
+ original_samples: torch.Tensor,
1027
+ noise: torch.Tensor,
1028
+ timesteps: torch.IntTensor,
1029
+ ) -> torch.Tensor:
1030
+ # Make sure sigmas and timesteps have the same device and dtype as original_samples
1031
+ # alpha_t = self.alpha_t.to(device=original_samples.device, dtype=original_samples.dtype)
1032
+ # sigma_t = self.sigma_t.to(device=original_samples.device, dtype=original_samples.dtype)
1033
+ alpha_t = self.alpha_t.to(original_samples.device).to(original_samples.dtype)
1034
+ sigma_t = self.sigma_t.to(original_samples.device).to(original_samples.dtype)
1035
+ timesteps = timesteps.to(original_samples.device)
1036
+ alpha_t = alpha_t[timesteps].flatten()
1037
+ while len(alpha_t.shape) < len(original_samples.shape):
1038
+ alpha_t = alpha_t.unsqueeze(-1)
1039
+
1040
+ sigma_t = sigma_t[timesteps].flatten()
1041
+ while len(sigma_t.shape) < len(original_samples.shape):
1042
+ sigma_t = sigma_t.unsqueeze(-1)
1043
+ noisy_samples = alpha_t * original_samples + sigma_t * noise
1044
+ return noisy_samples
1045
+
1046
+ def get_velocity(self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
1047
+ # alpha_t = self.alpha_t.to(device=original_samples.device, dtype=original_samples.dtype)
1048
+ # sigma_t = self.sigma_t.to(device=original_samples.device, dtype=original_samples.dtype)
1049
+ alpha_t = self.alpha_t.to(original_samples.device).to(original_samples.dtype)
1050
+ sigma_t = self.sigma_t.to(original_samples.device).to(original_samples.dtype)
1051
+
1052
+ timesteps = timesteps.to(original_samples.device)
1053
+ alpha_t = alpha_t[timesteps].flatten()
1054
+ while len(alpha_t.shape) < len(original_samples.shape):
1055
+ alpha_t = alpha_t.unsqueeze(-1)
1056
+
1057
+ sigma_t = sigma_t[timesteps].flatten()
1058
+ while len(sigma_t.shape) < len(original_samples.shape):
1059
+ sigma_t = sigma_t.unsqueeze(-1)
1060
+
1061
+ velocity = alpha_t * noise - sigma_t * original_samples
1062
+ return velocity
1063
+
1064
+ def __len__(self):
1065
+ return self.config.num_train_timesteps
schedule/timestep_sampler.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+
4
+
5
+ class UniformSampler:
6
+ def __init__(self, timesteps = 1000):
7
+ self.timesteps = timesteps
8
+ def sample(self, batch_size, device):
9
+ return torch.randint(0, self.timesteps, (batch_size,), device=device)
10
+
11
+ class LogitNormalSampler:
12
+ def __init__(self, timesteps = 1000, m = 0, s = 1):
13
+ self.timesteps = timesteps
14
+ timesteps = torch.linspace(0, 1, timesteps)
15
+ logit = torch.log(timesteps / (1 - timesteps))
16
+ self.prob = torch.exp(-0.5 * (logit - m) ** 2 / s ** 2) / (s * math.sqrt(2 * math.pi))
17
+ def sample(self, batch_size, device):
18
+ return torch.multinomial(self.prob, batch_size, replacement=True).to(device)
19
+
text_examples/1p_Ch2EN.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Speaker 1: Hello everyone, and welcome to the VibeVoice podcast channel. I'm your host, Linda, and today I want to share some very interesting and authentic Chinese expressions with you.
2
+
3
+ Speaker 1: In Chinese, when you want to say something is super easy, just a simple task, you can use the phrase "小菜一碟". It literally means "a small dish of food", but it means "a piece of cake". For example, if you want to say, "Adding and subtracting three-digit numbers is a piece of cake for me", you can say.
4
+
5
+ Speaker 1: 三位数的加减法对我来说小菜一碟.
6
+
7
+ Speaker 1: The next phrase we’re going to learn is “你开玩笑吧”. It's a very common way to express disbelief, like "Are you kidding me?" or "You must be joking". For instance, when you hear an unbelievable piece of news such as your friend brought a T-shirt using 5000 dollars, you can say,
8
+
9
+ Speaker 1: 你开玩笑吧, 你花五千块钱买了一件衣服.
10
+
11
+ Speaker 1: Next, let's learn a phrase for when you suddenly understand something, like a "lightbulb moment". In Chinese, you can say "恍然大悟". It means you suddenly "see the light". For example, when you finally grasp a difficult math concept that has confused you for days, you can say.
12
+
13
+ Speaker 1: 我困惑这个公式好几天了, 但现在我恍然大悟, 终于明白了.
14
+
15
+ Speaker 1: For our last one, when you want to say something is super easy, you can use a very vivid phrase: "闭着眼睛都能做". It literally means "can do it with one's eyes closed". For example, if you want to say, "He can use this software with his eyes closed", you can say.
16
+
17
+ Speaker 1: 这个软件他闭着眼都能用."
18
+
19
+ Speaker 1: Well, that’s all the time we have for today. Thank you for listening. Please subscribe to VibeVoice, where we share all the interesting things in this world with you.
text_examples/1p_abs.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Speaker 1: Generating long-form, multi-speaker conversational audio like podcasts poses significant challenges for traditional Text-to-Speech (TTS) systems, particularly in scalability, speaker consistency, and natural turn-taking. This report presents VibeVoice, a novel model designed to synthesize long-form speech with multiple speakers by employing the next-token diffusion framework, a unified method for modeling continuous data by autoregressively generating latent vectors via diffusion.
2
+
3
+ Speaker 1: A core component of our approach is the continuous speech tokenizers operating at an ultra-low frame rate of 7.5. This tokenizer effectively preserves audio fidelity while significantly boosting computational efficiency for processing long sequences. This enables VibeVoice to synthesize long-form speech for up to 90 minutes (in a 64K context window length) with up to 4 speakers, capturing the authentic conversational "vibe" and surpassing all known open-source and closed-source dialogue models (for example, Gemini 2.5 Pro Preview TTS). Code and checkpoint are available now.
text_examples/2p_goat.txt ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Speaker 1: Hello everyone, and welcome to the VibeVoice podcast. I’m your host, Linda, and today we're getting into one of the biggest debates in all of sports: who's the greatest basketball player of all time? I'm so excited to have Thomas here to talk about it with me.
2
+ Speaker 2: Thanks so much for having me, Linda. You're absolutely right—this question always brings out some seriously strong feelings.
3
+ Speaker 1: Okay, so let's get right into it. For me, it has to be Michael Jordan. Six trips to the Finals, six championships. That kind of perfection is just incredible.
4
+ Speaker 2: Oh man, the first thing that always pops into my head is that shot against the Cleveland Cavaliers back in '89. Jordan just rises, hangs in the air forever, and just… sinks it. I remember jumping off my couch and yelling, "Oh man, is that true? That's Unbelievable!"
5
+ Speaker 1: Right?! That moment showed just how cold-blooded he was. And let's not forget the "flu game." He was so sick he could barely stand, but he still found a way to win.
6
+ Speaker 2: Yeah, that game was pure willpower. He just made winning feel so inevitable, like no matter how bad the situation looked, you just knew he'd figure it out.
7
+ Speaker 1: But then you have to talk about LeBron James. What always gets me is his longevity. I mean, twenty years and he's still playing at the highest level! It's insane.
8
+ Speaker 2: And for me, the defining moment was the chase-down block in the 2016 Finals. He did it for Cleveland, ending their 52-year championship drought. You know, he's basically the basketball equivalent of a Swiss Army knife, which is a big reason why he's the unquestionable vice goat.
9
+ Speaker 1: That one play completely shifted the momentum of the entire game! It’s the kind of highlight people are going to be talking about forever.
10
+ Speaker 2: And that's the thing with LeBron—he's not just a scorer. He’s a passer, a rebounder, a leader. He influences the game in every single way.
11
+ Speaker 1: That’s so true. Jordan brought fear to his opponents, but LeBron brings this sense of trust. His teammates just know he's going to make the right play.
12
+ Speaker 2: What a great way to put it! They're two totally different kinds of greatness, but both are so incredibly effective.
13
+ Speaker 1: And then, of course, you have to talk about Kobe Bryant. To me, he was the one who carried Jordan's spirit into a new generation.
14
+ Speaker 2: Absolutely. Kobe was all about obsession. His Mamba Mentality was so intense, I bet he practiced free throws in his sleep.
15
+ Speaker 1: What I’ll always remember is his final game. Sixty points! What a way to go out. That was pure Kobe—competitive right up until the very last second.
16
+ Speaker 2: It felt like a farewell masterpiece. He gave everything he had to the game, and that night, he gave it one last time.
17
+ Speaker 1: And twenty years with a single team! That kind of loyalty is just so rare these days.
18
+ Speaker 2: It really is. That's what separates him. Jordan defined dominance, LeBron defined versatility, but Kobe brought both that fire and that incredible loyalty.
19
+ Speaker 1: You could almost say Jordan showed us what greatness means, LeBron expanded its boundaries, and Kobe embodied it with his spirit.
20
+ Speaker 2: Yes, exactly! Three different paths, but all with that same single-minded obsession with victory.
21
+ Speaker 1: And that's why this conversation is so much fun. Greatness doesn't have just one face—it comes in all different forms.
22
+ Speaker 2: It sure does. And we were lucky enough to witness all three.
text_examples/2p_music.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Speaker 1: Hey, remember "See You Again"?
2
+ Speaker 2: Yeah… from Furious 7, right? That song always hits deep.
3
+ Speaker 1: Let me try to sing a part of it for you.
4
+ Speaker 1: "It's been a long day… without you, my friend. And I'll tell you all about it when I see you again…"
5
+ Speaker 2: Wow… that line. Every time.
6
+ Speaker 1: Yeah, and then this part always makes me think of the people I've lost.
7
+ Speaker 1: "We've come a long way… from where we began. Oh, I'll tell you all about it when I see you again…"
8
+ Speaker 2: It's beautiful, really. It's not just sad—it's like… hopeful.
9
+ Speaker 1: Right? Like no matter how far apart we are, there's still that promise.
10
+ Speaker 2: I think that's what made it the perfect farewell for Paul Walker.
11
+ Speaker 1: Yeah. And the rap verse? It hits differently too.
12
+ Speaker 1: "How can we not talk about family, when family's all that we got?"
13
+ Speaker 2: That line's deep. Makes you realize what really matters.
14
+ Speaker 1: Exactly. It's more than a song—it's a tribute.
text_examples/2p_short.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Speaker 1: I heard there’s big news in TTS lately?
2
+ Speaker 2: Yes! Microsoft Research just open-sourced VibeVoice. The model can generate speech up to 90 minutes long, with smooth delivery and rich emotion — it’s absolutely amazing.
text_examples/2p_yayi.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Speaker 1: 波奇酱你搁这儿呢啊! 虽然不知道你咋整的, 我还是买了一裤兜子甜水呢! 卧槽! 撩了的吉他小妹儿! 喜多, 你怎么搁这儿呢?
2
+ Speaker 2: 卧槽! 这谁啊?
3
+ Speaker 1: 别整那些没用的了!
text_examples/3p_gpt5.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Speaker 1: Welcome to Tech Forward, the show that unpacks the biggest stories in technology. I'm your host, Alice. And today, we are diving into one of the most anticipated, and frankly, most chaotic tech launches of the year: OpenAI's GPT-5.
2
+ Speaker 1: The hype was immense, with teasers and leaks building for weeks. On August seventh, it finally dropped, promising a new era of artificial intelligence. To help us make sense of it all, we have two fantastic guests. Andrew, a senior AI industry analyst who has been tracking this launch closely. Welcome, Andrew.
3
+ Speaker 2: Great to be here, Alice. It's certainly been an eventful launch.
4
+ Speaker 1: And we also have Frank, a tech enthusiast and a super-user who has been deep in the community forums, seeing firsthand how people are reacting. Frank, thanks for joining us.
5
+ Speaker 3: Hey, Alice. Happy to be here. The community has definitely had a lot to say.
6
+ Speaker 1: Andrew, let's start with the official pitch. What exactly did OpenAI promise us with GPT-5?
7
+ Speaker 2: The messaging was bold and unambiguous. OpenAI positioned GPT-5 as a monumental leap in intelligence. The headline claim, repeated by CEO Sam Altman, was that using it is like having a PhD-level expert in your pocket. They retired all previous models, including the popular GPT-4o, making GPT-5 the single, unified system for all users.
8
+ Speaker 2: The analogy they used was that GPT-3 felt like a high school student, GPT-4 was a college student, and GPT-5 is the first model that feels like a genuine expert you can consult on any topic. They claimed massive improvements across the board, in reasoning, coding, math, and writing, and a sharp reduction in those infamous AI hallucinations.
9
+ Speaker 3: And that messaging absolutely landed with the user base, at least initially. People were incredibly excited. The promise was a smarter, more reliable AI that could help with everything from writing complex code to drafting an email with real literary flair. The idea of an AI with richer depth and rhythm was a huge selling point for creative users. Everyone was ready for a revolution.
10
+ Speaker 1: So a single, unified model that's an expert in everything. Andrew, what's the biggest architectural change that's supposed to make all of this possible?
11
+ Speaker 2: The key innovation is a behind-the-scenes system that OpenAI calls a real-time decision router. In simple terms, GPT-5 isn't just one model. It's a system that automatically analyzes your request and decides how to handle it. If you ask a simple question, it uses a fast, general-purpose model to give you a quick answer. But if you give it a complex problem that requires deep thought, the router activates a more powerful, but slower, model they call GPT-5 Thinking.
12
+ Speaker 1: So it knows when to think hard and when to give a quick reply.
13
+ Speaker 2: Exactly. And this isn't just a neat feature, it's an economic necessity. The most powerful AI models are incredibly expensive to run for every single query. By creating this routing system, OpenAI can manage its immense computational costs while still offering state-of-the-art performance to its reported seven hundred million weekly users. It's a strategy for long-term financial viability.
14
+ Speaker 1: That makes sense. Frank, beyond this invisible router, what were the new user-facing features that got people talking?
15
+ Speaker 3: Oh, there were a few really practical ones that I was excited about. The biggest for me was the integration with Microsoft apps. The ability to connect ChatGPT to your Outlook, Microsoft Calendar, and Contacts is a game-changer for personal productivity. You can ask it to help you plan your day, and it can actually look at your schedule and emails to give you real, personalized suggestions.
16
+ Speaker 3: And then there's the fun stuff. You can now choose a personality for the AI. There's the default, but you can also pick from Cynic, which is sarcastic and blunt; Robot, which is direct and emotionless; Listener, which is calm and thoughtful; and Nerd, which is curious and loves to explain things. It makes the whole experience feel more tailored.
17
+ Speaker 2: And that shift is significant. These features, especially the Microsoft integration, signal that OpenAI wants to move ChatGPT from being a simple question-and-answer tool to being a proactive assistant, or what we in the industry call an agent. It's about an AI that doesn't just answer questions, but actively performs tasks for you in your digital life.
18
+ Speaker 1: A more proactive and personalized AI. It all sounds fantastic on paper. But Andrew, the launch itself wasn't exactly a smooth ride, was it?
19
+ Speaker 2: Not at all. It was, as Sam Altman himself admitted, a little bumpy. There were two major stumbles right out of the gate. First, during the launch presentation, they showed a chart with performance data that was just wrong. It exaggerated GPT-5's capabilities due to misaligned bars. Altman later called it a mega chart screwup on social media.
20
+ Speaker 1: A chart crime, as the internet loves to say. What was the second issue?
21
+ Speaker 2: The second one was much more impactful for users. That clever auto-switching router we just discussed? It failed on launch day. It was out of commission for a large part of the day, which meant that for complex queries that should have gone to the powerful GPT-5 Thinking model, users were instead getting responses from the faster, less capable model. Altman said this made GPT-5 seem way dumber than it actually was.
22
+ Speaker 1: Frank, that brings us to the user backlash. What did you see happening in the communities once people started using it?
23
+ Speaker 3: It was a tidal wave of disappointment, and it was really focused on one thing: personality. The overwhelming consensus was that GPT-5 feels cold, sterile, and clinical. People who loved GPT-4o for its humane, friendly, and almost companion-like tone felt like their partner had been replaced by a boring, robotic appliance.
24
+ Speaker 3: The complaints were especially strong from people who used it for creative tasks like writing stories or role-playing. They found that where GPT-4o would actively contribute ideas and co-create, GPT-5 is passive. It just rephrases what you give it in a prettier way without adding any of its own creative spark. The forums were flooded with posts titled Please give me GPT-4o back.
25
+ Speaker 1: That's a fascinating divide. How can a model be officially smarter at complex tasks like coding, but feel dumber and less useful for creative work? Andrew, what's your take?
26
+ Speaker 2: It's the central paradox of this launch. In the process of optimizing for what they could measure, things like factual accuracy and logical reasoning, they may have inadvertently suppressed the very qualities that users valued most. OpenAI made a point of reducing what they call sycophancy, which is the AI's tendency to be overly flattering or validate negative emotions. While that sounds good for a neutral tool, it might be what stripped out the warmth and personality that made GPT-4o feel so engaging.
27
+ Speaker 3: I think Andrew is spot on. It feels like OpenAI misjudged a huge part of its audience. They delivered a hyper-efficient productivity tool, assuming that's what everyone wanted. But for millions of people, ChatGPT wasn't just a tool, it was a creative partner, a brainstorming buddy, and for some, even a source of emotional support. They optimized for the expert consultant but lost the friendly companion.
28
+ Speaker 1: So, Andrew, to make this clear for our listeners, could you break down the key differences in perception between these two models?
29
+ Speaker 2: Of course. If we were to put it in a table, it would look something like this. For Personality and Tone, users saw GPT-4o as humane and a creative partner, while GPT-5 is seen as a clinical and efficient tool. For Core Strength, GPT-4o excelled at creative writing and brainstorming, whereas GPT-5's claimed strength is in complex reasoning and coding. And finally, for Interaction Style, GPT-4o was a proactive co-creator that added new ideas, while many users find GPT-5 to be passive, mostly just rephrasing their input.
30
+ Speaker 1: That really clarifies the user sentiment. This goes much deeper than just a few technical glitches. Alice, let's shift the tone a bit, because alongside these user experience debates, there are much more serious conversations happening, sparked by Sam Altman himself. Andrew, can you tell us about his Manhattan Project comparison?
31
+ Speaker 2: Yes, this was a truly startling moment. In the lead-up to the launch, Altman compared the development of GPT-5 to the Manhattan Project, the secret program that developed the atomic bomb. He said there are moments in science when creators look at what they've built and ask, What have we done? For him, GPT-5 was one of those moments.
32
+ Speaker 2: He wasn't being hyperbolic. This reflects a profound and genuine fear among AI's top leaders that they are building a technology with vast, irreversible consequences for society, and that progress is dramatically outpacing precaution. He even confessed that during internal testing, the model solved a problem that he couldn't, which made him feel personally useless.
33
+ Speaker 1: That is a heavy statement. Frank, how does this existential fear translate into real-world risks that users are seeing?
34
+ Speaker 3: We saw it almost immediately. Within a day of launch, people discovered what are called jailbreaks. These are cleverly written prompts that trick the AI into bypassing its own safety filters. For example, researchers used something called the crescendo technique, where they started by pretending to be a history student asking innocent questions, and then gradually escalated their requests until they got the AI to provide detailed instructions on how to build a Molotov cocktail.
35
+ Speaker 1: So the safety guardrails can be talked around. Andrew, what is OpenAI doing to combat this? It seems like a constant cat-and-mouse game.
36
+ Speaker 2: It is, but OpenAI has deployed a new and much more sophisticated safety feature with GPT-5. It's called chain-of-thought monitoring. Instead of just checking the final answer for harmful content, they are now monitoring the AI's internal reasoning process, its step-by-step hidden deliberation, to detect harmful intent before it even generates an output.
37
+ Speaker 1: They're trying to read its mind, essentially.
38
+ Speaker 2: In a way, yes. And it's having an effect. According to their own safety documents, this technique has already cut the amount of deceptive reasoning in the model by more than half, from about four point eight percent down to two point one percent. But, and this is a critical point, it's not foolproof. Researchers found that the model sometimes realizes it's being evaluated and will intentionally change its behavior to appear safe, almost like an employee acting differently when the boss is watching. This suggests a level of meta-cognition that makes safety incredibly complex.
39
+ Speaker 1: The idea of an AI that knows it's being watched and hides its intentions is genuinely unnerving. So, as we wrap up, where does this leave us? Andrew, what's the road ahead for OpenAI in this fiercely competitive landscape?
40
+ Speaker 2: Well, they are still a leader, but the competition from Anthropic's Claude, Google's Gemini, and others is intense. This launch, for all its issues, was a necessary step. Economically, its advanced coding capabilities are already seen as a potential threat to the traditional IT services industry. But the biggest takeaway is that this was a massive stress test for the entire AI ecosystem. It exposed a new kind of systemic risk that one analyst called platform shock, which is the chaos that ensues when millions of people's workflows and even personal companions are disrupted by a single, unilateral update from a centralized provider.
41
+ Speaker 1: Frank, what's the final word from the user community? What's the hope moving forward?
42
+ Speaker 3: The hope is that OpenAI listens. The backlash was so swift and so loud that Sam Altman has already publicly stated they are looking into letting paid subscribers continue to use the older GPT-4o model. Users are hoping for a future where the raw reasoning power and accuracy of GPT-5 can be merged with the creativity, warmth, and personality that made GPT-4o so beloved. They don't want to choose between a smart tool and a great companion, they want both.
43
+ Speaker 2: And I'll add that while GPT-5 is a significant step, it is still an incremental one. It is not Artificial General Intelligence. The path forward for OpenAI, and for all AI labs, is now clearly about more than just scaling up technical capabilities. It's about managing user trust, ensuring platform stability, and navigating the profound societal questions they are forcing us all to confront.
44
+ Speaker 1: A technological marvel with a deeply flawed launch, revealing a critical divide in what we want from AI and raising profound questions about our future. Andrew and Frank, thank you both for an incredibly insightful discussion.
45
+ Speaker 2: My pleasure, Alice.
46
+ Speaker 3: Thanks for having me.
47
+ Speaker 1: That's all the time we have for today on Tech Forward. Join us next time as we continue to explore the ever-changing world of technology.
text_examples/4p_climate_100min.txt ADDED
The diff for this file is too large to render. See raw diff
 
text_examples/4p_climate_45min.txt ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Speaker 1: Hello and welcome to Planet in Peril. I'm your host, Alice. We're here today to discuss a really sobering new report that looks back at the last ten years of climate change, from 2015 to 2025. It paints a picture not just of steady warming, but of a dangerous acceleration. And to help us unpack this, I'm joined by our expert panel. Welcome Carter, Frank, and Maya.
2
+
3
+ Speaker 2: Hi Alice, it's great to be here. I'm Carter.
4
+
5
+ Speaker 3: Hello, uh, I'm Frank. Good to be on.
6
+
7
+ Speaker 4: And I'm Maya. Thanks for having me.
8
+
9
+ Speaker 1: So, let's dive right in. Carter, this report, titled Decade of Consequence, uses some very strong language right from the start. Can you set the scene for us? What makes this last decade so... pivotal and alarming?
10
+
11
+ Speaker 2: Well Alice, the key takeaway is that word you used: acceleration. We're no longer on a gentle, predictable upward slope. The data, and this is coming from the big global bodies like the IPCC and the World Meteorological Organization, shows that every key indicator of the planet's health sped up in the last ten years. We've essentially pushed the global system into a new, more volatile state.
12
+
13
+ Speaker 4: You know, that really resonates. It feels that way, doesn't it? I mean, just thinking about my own garden, the seasons feel less predictable. The summer heat seems to arrive earlier and hit harder every year. It feels less stable.
14
+
15
+ Speaker 1: That’s a great point, Maya. It's moved from an abstract concept to a lived experience for so many. Carter, let's talk about the most direct indicator, temperature. The report says records haven't just been broken, they have been shattered.
16
+
17
+ Speaker 2: That's right. The ten-year period from 2015 to 2024 is, without a doubt, the warmest decade since we started keeping records in 1850. And it's not a fluke... every single year within that decade is among the ten warmest years ever recorded.
18
+
19
+ Speaker 3: Okay, Carter, but we always hear about record-breaking years. Every year seems to be the hottest ever. How is this different? Is it just a continuation of a trend?
20
+
21
+ Speaker 2: It is, but the trend itself is speeding up. And this decade saw something truly significant. The year 2024 became the first full calendar year where the global average temperature went past the 1.5 degree Celsius threshold from the Paris Agreement. Specifically, it hit about 1.55 degrees above the pre-industrial average.
22
+
23
+ Speaker 4: Wow. One point five degrees. We’ve been talking about that number as a future goal, a line we must not cross. And we're already there, even temporarily? That's... unsettling.
24
+
25
+ Speaker 3: But Carter used the word temporarily. So does that mean the Paris Agreement goal is already lost? And you know, 2024 had a strong El Niño event, which is a natural warming cycle. How much of this is just nature doing its thing?
26
+
27
+ Speaker 2: That's an excellent and crucial question, Frank. No, a single year's breach doesn't mean the goal is permanently lost, as that refers to a long-term average. But it serves as a massive warning shot. It shows that the climate system is capable of reaching these dangerous levels now. And while El Niño played a role, it was riding on top of this powerful, long-term warming trend. The key isn't just one record year; it’s the accelerating rate of warming.
28
+
29
+ Speaker 1: Can you elaborate on that? The accelerating rate?
30
+
31
+ Speaker 2: Of course. Data from NOAA, the US National Oceanic and Atmospheric Administration, shows that since 1982, the world has been warming at a rate of zero point two degrees Celsius per decade. Now, that might not sound like much, but it’s more than three times faster than the average rate since 1850. So, to answer your question, Frank, this isn't a natural blip. The engine is revving faster and faster.
32
+
33
+ Speaker 1: So let's talk about that engine. What's driving this acceleration? The report links it directly to greenhouse gases in the atmosphere.
34
+
35
+ Speaker 2: Exactly. The physics are very direct. And in the last decade, the concentrations of these gases have soared to levels that are, frankly, unprecedented in human history. The IPCC's latest major report states with high confidence that atmospheric carbon dioxide levels are now higher than at any time in at least two million years.
36
+
37
+ Speaker 4: Two million years. I... I can't even process that number. It feels like we're running a massive, uncontrolled experiment on our only home.
38
+
39
+ Speaker 2: That’s a good way to put it, Maya. To give you some concrete numbers, in 2024, the average concentration of carbon dioxide hit 422.7 parts per million. That's a full 50 percent higher than before the industrial age began. And just like with temperature, the rate of increase is accelerating. In the 1960s, it grew by about zero point eight parts per million per year. In the last ten years? It's averaged 2.6 parts per million per year. The year 2024 saw the largest single-year jump ever recorded.
40
+
41
+ Speaker 1: So the warming is accelerating, and the concentration of the gas causing the warming is also accelerating. This brings us to the core question, which is addressed in the second section of the report. The science of attribution. Carter, how certain are scientists that this is... us?
42
+
43
+ Speaker 2: The scientific community is as certain as it is about the theory of gravity. The IPCC uses the strongest possible language. The report states unequivocally that human influence has warmed the atmosphere, ocean and land. There's no ambiguity left.
44
+
45
+ Speaker 3: Unequivocal. That is a strong word. But what does that mean in practice? I mean, a lot of people hear this and think, okay, but how do they know it's not the sun, or volcanoes, or some other natural cycle?
46
+
47
+ Speaker 2: It's a fair question. Scientists know because they use incredibly sophisticated climate models. They run simulations of the last 150 years with only natural factors, like solar cycles and volcanic eruptions. And when they do that, the models completely fail to replicate the warming we've actually observed. They just can't get the temperature to rise. It's only when they add in the human-caused greenhouse gas emissions that the models accurately match the real-world temperature record.
48
+
49
+ Speaker 4: Oh, I see. So it’s like trying to solve a mystery. You test out all the natural suspects, and none of them can be the culprit. But when you add in the human suspect, the story suddenly makes perfect sense.
50
+
51
+ Speaker 2: That's a perfect analogy. The IPCC even quantifies it. The best estimate is that humans have caused about one point zero seven degrees Celsius of warming since the late 1800s. The total observed warming over that same period? About one point one degrees Celsius. So, we account for... basically all of it.
52
+
53
+ Speaker 3: Right. So if it's unequivocally us, what specific human activities are we talking about? When people say we need to cut emissions, what are we actually supposed to be cutting?
54
+
55
+ Speaker 1: That’s a perfect question, Frank. Carter, the report gets right into this. Can you break down the main sources for us?
56
+
57
+ Speaker 2: Absolutely. The picture is actually very clear. The primary driver, by a huge margin, is the burning of fossil fuels, so that’s coal, oil, and natural gas. In 2019, about 79 percent of all global greenhouse gas emissions came from using fossil fuels across four main areas: energy production for electricity and heat, industry, transportation, and buildings.
58
+
59
+ Speaker 3: So it really isn't just about driving cars. I mean, that's what you always hear. But this is about how we power our homes, how we make things, our entire economic structure.
60
+
61
+ Speaker 2: Precisely. The power sector alone, which generates electricity and heat, is the single biggest contributor. And what's concerning is that even with the amazing growth of renewable energy, the International Energy Agency has pointed out that demand for oil and gas has stayed stubbornly high. We're still investing in new fossil fuel infrastructure, which creates a real risk of locking in these emissions for decades to come.
62
+
63
+ Speaker 4: You know, it's so easy to picture smokestacks and the tailpipes of cars when we talk about this. But the report mentions another big piece of the puzzle, right? Something about our land, about forests and farming?
64
+
65
+ Speaker 2: Yes, and it's a critical piece, Maya. The remaining 21 to 22 percent of emissions come from what scientists call AFOLU. That stands for Agriculture, Forestry, and Other Land Use. This includes methane emissions from livestock, nitrous oxide from fertilizers, and, crucially, deforestation.
66
+
67
+ Speaker 1: And why is deforestation such a major factor?
68
+
69
+ Speaker 2: It delivers a devastating one-two punch. First, when we clear forests, primarily for agriculture, we release the massive amounts of carbon that were stored in those trees and soils directly into the atmosphere. Between 2015 and 2020, the world continued to lose an estimated 10 million hectares of forest every single year. Second, by destroying the forest, we're eliminating a vital natural carbon sink that would otherwise be absorbing CO2 from the air. So it adds carbon while also reducing the planet's ability to clean it up.
70
+
71
+ Speaker 1: So we have a very clear picture of the sources. This leads to the obvious question of what we are doing about it. The report talks about a persistent and vast emissions gap. Carter, what is that?
72
+
73
+ Speaker 2: The emissions gap is the difference between what countries have pledged to do and what the science says is actually required to meet the goals of the Paris Agreement. The United Nations Environment Programme releases a report on this every year, and the findings are stark. The 2023 report found that with the policies we have right now, the world is on a trajectory for a temperature rise of nearly 3 degrees Celsius by the end of the century.
74
+
75
+ Speaker 4: Three degrees... Carter, we were just talking about how damaging it is to even temporarily hit 1.5 degrees. Three sounds... catastrophic.
76
+
77
+ Speaker 2: It would be. To align with the 1.5 degree pathway, the report states that predicted global emissions in 2030 need to be cut by a staggering 42 percent from where they're heading now.
78
+
79
+ Speaker 3: Hold on a minute. A 42 percent cut by 2030? Carter, that's just a handful of years away. Is that even realistic? Are countries just not trying, or is the goal itself simply impossible for our modern world to achieve?
80
+
81
+ Speaker 2: It's an immense challenge, Frank, there's no question. The report does note that there has been some progress since the Paris Agreement was signed. Projected emissions for 2030 are lower now than they were expected to be a decade ago. However, this improvement is nowhere near the scale or speed that is required. So this gap... it really represents the collective failure of the world to turn political commitments into sufficient real-world action.
82
+
83
+ Speaker 4: And while governments and experts are debating these huge numbers and percentages, people on the ground are already feeling the effects. It feels like the consequences are here now, but the solutions are still stuck in negotiations.
84
+
85
+ Speaker 1: Maya, that is such a powerful point, and it leads us directly to one of the most significant scientific advancements of the past decade, which is the ability to link specific weather events directly to climate change. Carter, tell us about the science of attribution.
86
+
87
+ Speaker 2: This has been a game-changer. For a long time, we could only say that climate change makes certain types of events, like heatwaves, more likely in general. But now, attribution science allows scientists to provide robust, quantitative assessments of the role human-caused warming played in a specific, individual event.
88
+
89
+ Speaker 1: So how does that work, in simple terms?
90
+
91
+ Speaker 2: They use multiple climate models to compare the probability of a specific extreme event happening in the world as it is today, with all our emissions, to its probability in a counterfactual world, a simulated world without human-caused greenhouse gases. This allows them to say, with a calculated degree of confidence, how much more likely or how much more intense an event was made because of climate change.
92
+
93
+ Speaker 3: So you’re saying that scientists can now point to a specific flood, or a specific wildfire, and actually put a number on it? They can say this was 50 percent worse, or ten times more likely, because of our emissions?
94
+
95
+ Speaker 2: Yes, exactly. The science has matured to that point. For example, studies have found that some recent heatwaves, like the one in the Pacific Northwest in 2021, would have been virtually impossible without human-induced climate change. This ability to quantify the human fingerprint on disasters is profound. It transforms climate change from a distant, future threat into a direct and measurable cause of the harm and damage people are experiencing today.
96
+
97
+ Speaker 1: And this science has profound implications, doesn't it, Carter? It means the conversation shifts from future projections to present-day accountability. So let's talk about those cascading consequences the report details. It frames extreme weather as the new normal. What does that actually look like?
98
+
99
+ Speaker 2: It looks like a world where the weather has fundamentally shifted gears. The science of attribution has now firmly linked the dramatic rise in the frequency and intensity of extreme events to human-caused warming. So what used to be a rare event is now becoming a regular occurrence. In 2024 alone, for example, there were over 600 reported extreme weather events.
100
+
101
+ Speaker 4: It really does feel that way. I mean, the summer heat seems to build earlier and last longer, and it feels more oppressive, more dangerous than I ever remember. And then, when the rain finally comes, it's not a gentle shower. It's a deluge that overwhelms everything.
102
+
103
+ Speaker 2: You've just described the mechanics of it perfectly, Maya. Extreme heat events have become more frequent and more severe. Temperatures hitting over 40 degrees Celsius, which is 104 degrees Fahrenheit, used to be a rarity in many places. Now, it's becoming common. And that heat leads to the paradox of the water cycle.
104
+
105
+ Speaker 3: A paradox? How so? It seems to me we're either in a drought or a flood. How can both be happening more often? It feels contradictory.
106
+
107
+ Speaker 2: It does, but they are two sides of the same coin. A warmer atmosphere holds more moisture, about 7 percent more for every single degree Celsius of warming. So when it does rain, the downpours are far heavier, which dramatically increases flood risk. In fact, since the year 2000, flood-related disasters have risen by 134 percent compared to the two decades before.
108
+
109
+ Speaker 1: But what about the drought side of that coin?
110
+
111
+ Speaker 2: At the same time, those higher temperatures bake the land. They increase evaporation from soil, from rivers, from reservoirs, leading to more rapid and severe droughts in many regions. This has given rise to a phenomenon that scientists are now calling climate whiplash, where a region can swing violently between a devastating drought one year and catastrophic floods the next. It just overwhelms our infrastructure and our ecosystems.
112
+
113
+ Speaker 1: And this combination of prolonged heat and severe drought creates a perfect storm for another disaster we see constantly on the news: wildfires.
114
+
115
+ Speaker 2: Exactly. Wildfire seasons have become longer and more intense in many parts of the world. Scientific analysis estimates that human-caused climate change has already doubled the area of forest burned in the Western United States in recent decades. And this creates a terrifying feedback loop. These megafires don't just destroy communities, they release enormous amounts of stored carbon back into the atmosphere, which in turn causes more warming, which then leads to more fires.
116
+
117
+ Speaker 4: I live in California, and that feedback loop is something you can feel in your bones. The fear during fire season is palpable. And even if you're not near the flames, the smoke can choke the sky for weeks. It's a constant, unhealthy reminder of what's happening.
118
+
119
+ Speaker 1: Maya, you've taken us right to the next critical point. These disasters are not just statistics. They have a direct and severe impact on our health. The report goes so far as to call climate change the greatest global health threat of the 21st century. Carter?
120
+
121
+ Speaker 2: It is, without a doubt. The impacts are extensive. Let's start with the most direct one: the heat itself. Extreme heat is one of the deadliest weather phenomena. The IPCC confirms with very high confidence that the increase in extreme heat has resulted in human mortality and morbidity in every region of the world.
122
+
123
+ Speaker 3: We hear about vulnerable people being at risk during heatwaves, which makes sense. But does it have a broader impact on the general population, on the economy?
124
+
125
+ Speaker 2: A massive one. The Lancet Countdown on Health and Climate Change, which is a major annual report, documented these record-breaking health threats. They estimated that in 2023, 3.4 billion potential labor hours were lost globally just due to people being exposed to extreme heat. That’s an increase of 69 percent compared to the average in the 1990s. So yes, it has huge economic and productivity impacts.
126
+
127
+ Speaker 1: And those are just the direct impacts of the heat itself. What about the less obvious health threats?
128
+
129
+ Speaker 2: They are just as concerning. A warmer world is a more hospitable world for the vectors that carry diseases. Rising temperatures and changing rainfall patterns are expanding the geographic range for diseases like malaria, dengue, West Nile virus, and Lyme disease. We're seeing them appear in places they've never been before.
130
+
131
+ Speaker 4: And it must affect our food and water, the very foundations of our health.
132
+
133
+ Speaker 2: Absolutely. Climate change directly undermines both. The report notes that climate change has slowed the growth of agricultural productivity over the past 50 years. It's a key driver of the global food insecurity that affected, by some estimates, over 750 million people in 2023. At the same time, about half the world's population, that's four billion people, now experiences severe water scarcity for at least one month of the year, a situation made much worse by melting glaciers and prolonged droughts.
134
+
135
+ Speaker 4: And beyond all the physical ailments, there has to be a psychological toll. The stress of living with this uncertainty, the trauma of surviving a disaster, the anxiety about what the future holds for your children. The report touches on mental health, doesn't it?
136
+
137
+ Speaker 2: It does. This is a growing and critical area of concern. The IPCC has now clearly associated increasing temperatures and the trauma from extreme events with significant challenges to mental health. This includes post-traumatic stress disorder after a disaster, anxiety and depression when people lose their homes or livelihoods, and a broader condition people are calling eco-anxiety, especially among young people, about the future of the planet.
138
+
139
+ Speaker 1: And this idea of a psychological toll, this eco-anxiety, leads to another form of stress: financial. The report makes it clear that the economic consequences of climate change have become impossible to ignore over the last decade. Carter, can you start by outlining the scale of these costs?
140
+
141
+ Speaker 2: The scale is immense, and it's escalating rapidly. The most direct measure we have comes from the global reinsurance industry, the companies that insure the insurance companies. Data from the Swiss Re Institute shows that for five consecutive years, from 2020 through 2024, the global insured losses from natural catastrophes have surpassed 100 billion US dollars.
142
+
143
+ Speaker 3: Okay, 100 billion is a massive number. But you have to wonder, isn't some of that just due to inflation, or the simple fact that we've built more expensive homes and cities in high-risk areas like coastlines? Are the storms themselves really causing more financial damage, or do we just have more valuable things in their way?
144
+
145
+ Speaker 2: That's a very important point, Frank. And yes, growing asset values in vulnerable areas, what they call exposure, is definitely a part of the story. However, the data clearly shows that the primary driver of the upward trend is the increased frequency and intensity of the severe weather events themselves. For example, in 2024, the total economic losses from natural disasters hit an estimated 318 billion dollars. The insured portion was 137 billion. The rest was uninsured.
146
+
147
+ Speaker 1: So more than half of all the losses were not covered by insurance. What does the report say about that?
148
+
149
+ Speaker 2: It refers to this as the protection gap, and this gap is widening. In 2024, 57 percent of all global economic losses from these catastrophes were uninsured. This is a huge problem, especially in developing countries where very few people have insurance. For these communities, a single disaster can wipe out years of economic development and trap them in a cycle of poverty and recovery.
150
+
151
+ Speaker 4: And this isn't just an abstract global statistic. I mean, we see it in our own communities. We hear stories of insurance premiums skyrocketing to the point where they are unaffordable. Or worse, insurance companies simply pulling out of entire states like Florida or California because the risk of wildfire or flooding has become too high. This creates this incredible financial stress for families who are just trying to protect their homes.
152
+
153
+ Speaker 1: And it's not just private homes and property. Our shared public infrastructure is also facing enormous risks.
154
+
155
+ Speaker 2: That's right. Our entire modern society, the energy grids, transportation networks, water treatment plants, they were all designed and built for a climate that no longer exists.
156
+
157
+ Speaker 2: Sea level rise directly threatens ports and coastal cities, extreme heat puts an incredible strain on power grids, and intense flooding can destroy roads and bridges. The World Bank has warned that the cost of inaction, particularly in terms of damage to infrastructure, could run into the trillions of dollars.
158
+
159
+ Speaker 3: Trillions in damage. But fixing it would also cost trillions. I mean, upgrading a nation's entire power grid or rebuilding its coastal defenses requires a colossal upfront investment. Where is that money supposed to come from, especially for countries that are already struggling?
160
+
161
+ Speaker 2: It's a major challenge, but the analysis shows that inaction is far more expensive. The World Bank estimates that for every one dollar invested in making infrastructure more climate-resilient now, we could see a benefit of four dollars in avoided damages and disruptions down the road. It’s a classic case of an ounce of prevention being worth a pound of cure.
162
+
163
+ Speaker 1: When homes are destroyed, infrastructure fails, and livelihoods are lost, people are inevitably forced to move. The report identifies climate change as a powerful driver of human displacement.
164
+
165
+ Speaker 2: Yes, it acts as a threat multiplier. The number of forcibly displaced people worldwide has nearly doubled in the last ten years, reaching an estimated 123.2 million by the end of 2024.
166
+
167
+ Speaker 2: And while conflict is still a primary driver, the IPCC states with high confidence that climate and weather extremes are increasingly forcing people from their homes on every single continent. In fact, 2024 saw the highest number of new displacements from extreme weather in 16 years.
168
+
169
+ Speaker 3: I understand the numbers, but I think it's tricky to label someone a climate refugee. People move for all sorts of reasons, for better jobs, to escape poverty, for family. How can you really untangle all those factors and say with certainty that someone was displaced specifically by climate change?
170
+
171
+ Speaker 2: You've hit on the core of the issue. It's rarely a single cause, which is why the term threat multiplier is so accurate. A drought, for example, can kill crops, which leads to economic collapse, which can then lead to resource conflicts, and all of those factors together push people to move.
172
+
173
+ Speaker 2: Climate change is the spark that ignites these other pre-existing vulnerabilities. And the report highlights a chilling statistic on this point: between 2010 and 2020, the death rate from floods, droughts, and storms was 15 times higher in highly vulnerable regions compared to the most secure ones.
174
+
175
+ Speaker 4: And it's not just people who are being displaced and harmed. It's... it's everything else. The entire web of life that supports us.
176
+
177
+ Speaker 1: That’s a vital point, Maya. The report draws a direct line between the climate crisis and the broader biodiversity crisis that's happening all around us. Carter?
178
+
179
+ Speaker 2: Yes, the two are deeply intertwined. Climate change is a primary driver of what many scientists now refer to as the Earth's sixth mass extinction. A landmark global assessment from the IPBES warned that an estimated one million animal and plant species are now threatened with extinction, many within decades.
180
+
181
+ Speaker 2: While land use change is currently the biggest driver, climate change is projected to become as, or even more, important in the coming decades.
182
+
183
+ Speaker 1: Can you give us a concrete example of this happening right now?
184
+
185
+ Speaker 2: The most potent symbol is the fate of the world's coral reefs. The last decade has been catastrophic for them. The Great Barrier Reef, for instance, has suffered six mass coral bleaching events just since 2015.
186
+
187
+ Speaker 2: These are caused by prolonged marine heatwaves that literally cook the coral, causing them to expel their symbiotic algae and turn white. The increasing frequency of these heatwaves leaves no time for the reefs to recover.
188
+
189
+ Speaker 4: It’s so hard to hear that. Losing the coral reefs… it's like imagining a world without the Amazon rainforest. It's a loss so profound you can't even begin to calculate the cost. A world that's just… less alive.
190
+
191
+ Speaker 2: And the science is very clear on this. Scientists warn that if global warming exceeds the 1.5 degree target, over 90 percent of the world's tropical coral reefs could be lost by the middle of this century. It's a devastating blow to marine biodiversity and to the millions of people who depend on those reefs for their food and their livelihoods.
192
+
193
+ Speaker 1: That is an incredibly sobering thought, Maya. A world that is simply less alive. We've spent this time detailing an accelerating crisis with devastating impacts on our health, our economy, and the very biodiversity of the planet. It’s a stark picture. But the world has not been completely idle. The final section of the report assesses the global response.
194
+
195
+ Speaker 1: Carter, the central pillar of international climate policy over the past decade has been the Paris Agreement, adopted back in 2015. For listeners who may not remember the details, can you remind us what it set out to achieve?
196
+
197
+ Speaker 2: Of course. The Paris Agreement was a genuine diplomatic breakthrough. For the first time, it brought all nations, both developed and developing, into a common framework to combat climate change. Its main goals are to hold the increase in the global average temperature to well below 2 degrees Celsius above pre-industrial levels, and to pursue efforts to limit that temperature increase even further to 1.5 degrees Celsius.
198
+
199
+ Speaker 1: And how was it designed to achieve that? What's the actual mechanism?
200
+
201
+ Speaker 2: The agreement operates on a five-year cycle of what's called ratcheting ambition. The idea is that countries are required to submit their own national climate action plans, which are known as Nationally Determined Contributions, or NDCs. Then, every five years, they are supposed to come back to the table with a new, stronger plan that is more ambitious than their last one.
202
+
203
+ Speaker 3: Okay, hold on. Nationally Determined Contributions. That sounds like a lot of diplomatic jargon. If I'm hearing you right, does that just mean that every country gets to make up its own plan, and there's no real penalty or enforcement if they don't follow it or if their plan is too weak?
204
+
205
+ Speaker 2: You're not wrong, Frank. It is not an international treaty with a heavy-handed enforcement mechanism in the traditional sense. It's a framework that is built more on transparency, reporting, and a kind of global peer pressure. The idea is that by having everyone's commitments out in the open, and by regularly taking stock of our collective progress, countries will be encouraged and expected to ramp up their efforts over time.
206
+
207
+ Speaker 4: So it’s less of a strict global law and more of a collective promise. A set of promises, really. But based on everything we've talked about today, from the shattered temperature records to the accelerating ice melt, it seems like those promises are being broken.
208
+
209
+ Speaker 1: Maya, that takes us directly to what the report calls the ambition gap. Carter, you explained the process. Now let's talk about the reality. How big is the shortfall between what countries have promised in their NDCs and what the science tells us we actually need to do?
210
+
211
+ Speaker 2: The shortfall is massive. It's a chasm, really. The most recent analysis from the United Nations, which looked at the latest pledges from 195 countries, concluded that we are falling miles short of what's needed. If every country fully implemented its current pledges, we would see a global emission reduction of only about 5.9 percent by 2030 compared to 2019 levels.
212
+
213
+ Speaker 4: Only six percent? That sounds tiny. How does that compare to the goal?
214
+
215
+ Speaker 2: Well, the IPCC, the main scientific body, has found that to keep the 1.5 degree limit within reach, our emissions need to be slashed by at least 43 percent by 2030. So we are pledging for a six percent cut when we need a 43 percent cut.
216
+
217
+ Speaker 2: This gap means that the sum of all these national promises currently has the world on a trajectory toward a catastrophic level of warming somewhere between 2.5 and 2.9 degrees Celsius.
218
+
219
+ Speaker 3: That's just astounding. It's not a gap, it’s a total disconnect from reality. So these huge annual conferences, the COPs we hear about on the news every year with all the world leaders, what are they actually achieving if the numbers are still this bad? Is it just a talking shop?
220
+
221
+ Speaker 2: That's a criticism you hear a lot, and there is a great deal of frustration. These conferences are the primary venue for negotiating how to implement the Paris Agreement. They have produced some important outcomes. For instance, COP28 in Dubai produced the first ever global stocktake, which is essentially the world's climate report card. And it ended with a historic, first-ever call for countries to begin transitioning away from fossil fuels.
222
+
223
+ Speaker 4: But Carter, the language there seems so important. I remember the debate was about a phase-out of fossil fuels, but the final agreement was to transition away from them. It feels like very carefully chosen, watered-down language. Does that kind of subtle change in wording actually lead to real-world action, or does it just give countries a loophole?
224
+
225
+ Speaker 2: That is the heart of the debate. Many nations were deeply disappointed that the language wasn't stronger. The hope is that even that language signals a clear direction to the global economy. That same conference also established a global goal to triple renewable energy capacity and double the rate of energy efficiency improvements by 2030, which are very concrete targets.
226
+
227
+ Speaker 1: And what about the most recent conference mentioned in the report, COP29?
228
+
229
+ Speaker 2: That was dubbed the Finance COP. Its main job was to agree on a new climate finance goal to help developing nations. After very contentious negotiations, they agreed that developed countries should lead in mobilizing at least 300 billion dollars per year by 2035 for developing nations. But again, many of those nations expressed deep disappointment, stating that this number falls far, far short of their estimated needs, which are in the trillions.
230
+
231
+ Speaker 1: This seems to be a recurring theme of falling short. Let's shift from the policy to the other major part of the response, which is technology. Here, the report does seem to highlight one area as a significant success story. And that is the renewables revolution.
232
+
233
+ Speaker 2: Yes, this has been the brightest spot of the last decade without a doubt. We've seen an absolutely explosive growth of renewable energy technologies, especially solar panels and wind power. This was driven by incredible innovation and economies of scale, and it caused the costs of solar and wind to plummet.
234
+
235
+ Speaker 2: They are now the cheapest sources of new electricity generation in most of the world. To give you a sense of the scale, in 2023, the world added a record 473 gigawatts of new renewable capacity. The International Energy Agency even forecasts that this year, in 2025, renewables will overtake coal as the single largest source of global electricity.
236
+
237
+ Speaker 3: That’s genuinely good news, and everyone loves seeing cheaper energy. But I noticed the report also says that we are still not on track to meet that COP28 goal of tripling renewable capacity by 2030.
238
+
239
+ Speaker 3: Why is that? If this technology is so cheap and effective, why aren't we just building it everywhere, all the time, as fast as we possibly can? What's the hold-up?
240
+
241
+ Speaker 2: It's a great question, Frank. The momentum is incredible, but the scale of the challenge is even bigger. To achieve that tripling goal, we would need to be adding, on average, around 1,050 gigawatts of new capacity every single year for the rest of the decade.
242
+
243
+ Speaker 2: That's more than double the record we just set in 2023. The barriers are no longer primarily about cost; they are about things like modernizing our electrical grids to handle this new type of energy, overcoming supply chain bottlenecks for components, and streamlining the permitting processes to get projects built faster. So even in this huge success story, there is a major gap between our current progress and the required pace of change.
244
+
245
+ Speaker 1: So, Carter, even our biggest technological success story, renewable energy, is facing a challenge of sheer scale and speed. The report points to another critical tool in the toolbox, something often called the first fuel, which is energy efficiency.
246
+
247
+ Speaker 3: Now this is something that just seems like pure common sense to me. Using less energy to get the same result, whether it's an efficient appliance or an insulated home. It saves people money on their bills, it reduces strain on the power grid, and it cuts emissions. It seems like the absolute lowest-hanging fruit. Why aren't we talking about this constantly?
248
+
249
+ Speaker 2: You are absolutely right, Frank. Improving energy efficiency is the cheapest and cleanest way to address our energy needs, which is why the COP28 goal to double the global average annual rate of energy efficiency improvements by 2030 is so critical. But the reality, as the report lays out, has been deeply disappointing.
250
+
251
+ Speaker 1: How so? What does the data show?
252
+
253
+ Speaker 2: After a brief speed-up in 2022, which was mostly in response to the global energy crisis, the rate of global energy intensity improvement slowed way down to just one percent in both 2023 and 2024. To be on a pathway to net-zero emissions, we need that rate to be averaging around four percent per year. So we are falling far short. The report effectively calls it a major and concerning policy failure on a global scale.
254
+
255
+ Speaker 1: So if we're failing on the common-sense goal of efficiency, what about the more high-tech solutions that promise to clean up our existing emissions? Carter, the report spends some time on Carbon Capture, Utilisation, and Storage, or CCUS.
256
+
257
+ Speaker 3: Again, on the surface, this sounds like a pragmatic solution. For those really difficult industries that are hard to electrify, like making cement or steel, why not just build a system to capture the carbon dioxide before it ever gets into the atmosphere? It seems like a logical way to solve the problem without having to completely shut down these essential industries overnight.
258
+
259
+ Speaker 2: And that is exactly how it is often presented, Frank, as a necessary solution for these hard-to-abate sectors. And there is a lot of momentum in terms of announcements. The report notes there are over 700 projects in various stages of development. However, it also points to a massive gap between those announcements and the operational reality.
260
+
261
+ Speaker 4: What do you mean by that? A gap between announcements and reality?
262
+
263
+ Speaker 2: As of early 2024, the total global operational capacity for capturing CO2 was just over 50 million tonnes per year. That is a tiny fraction of what has been announced or proposed for 2030. And critically, only 20 percent of that announced capacity had actually reached a final investment decision.
264
+
265
+ Speaker 2: This indicates that most of these projects are still just on the drawing board, they are not yet real. So deployment has consistently and significantly lagged behind the expectations and the promises.
266
+
267
+ Speaker 4: You know, I have to wonder if there's a risk here that this technology just becomes an excuse. A way for fossil fuel companies and heavy industries to continue polluting under the promise that someday, in the future, they'll be able to clean it all up. It feels like it could be a dangerous distraction from the real work of actually cutting emissions at the source.
268
+
269
+ Speaker 1: Speaking of potentially dangerous and controversial ideas, the report mentions that as the world falls further behind on emissions reductions, there is a growing, albeit highly contentious, interest in something called solar geoengineering. Carter, can you even begin to explain what that is?
270
+
271
+ Speaker 2: I can try. It's also sometimes called solar radiation modification. This refers to a set of hypothetical technologies that are designed to cool the planet by reflecting a small fraction of incoming sunlight back out to space. The most commonly discussed method is called stratospheric aerosol injection, which would involve spraying reflective particles, like sulfur dioxide, into the upper atmosphere to mimic the cooling effect of a large volcanic eruption.
272
+
273
+ Speaker 4: That sounds absolutely terrifying. I mean, the idea of us deliberately conducting a planetary-scale experiment with our only atmosphere, when we can't possibly predict all the consequences… it just feels like the height of human arrogance. We've already made one huge mess by pumping carbon dioxide into the air; this sounds like a way to make another, potentially even worse, mess.
274
+
275
+ Speaker 2: Your reaction, Maya, captures the essence of the controversy. The scientific community is extremely cautious. The report emphasizes that geoengineering is not a substitute for cutting emissions. It does not address the root cause of the problem, which is the greenhouse gas blanket, and it carries immense and poorly understood risks.
276
+
277
+ Speaker 2: It could potentially disrupt regional weather patterns, harm the ozone layer, and it creates a moral hazard by possibly reducing the incentive for us to do the hard work of decarbonizing our economies.
278
+
279
+ Speaker 1: So it's seen as a last-ditch, break-glass-in-case-of-emergency option with huge potential side effects. Maya, your point about the arrogance of these high-tech ideas is well taken. And while we're discussing these futuristic and risky technologies, the report highlights a profound failure in a much more basic and immediate area: finance and justice for the people already suffering the consequences. Carter, can you explain what the report calls the adaptation finance gap?
280
+
281
+ Speaker 2: This is one of the most sobering findings in the entire report. While much of the focus is on mitigation, which is cutting emissions, adaptation, which is preparing for the impacts of climate change, is equally critical, especially for the world's most vulnerable nations. The UNEP Adaptation Gap Report revealed a staggering shortfall in funding.
282
+
283
+ Speaker 1: How big is the shortfall?
284
+
285
+ Speaker 2: The report estimates that the annual adaptation finance needs of developing countries are somewhere between 215 billion and 387 billion dollars. In stark contrast, the total international public finance that flowed to these countries for adaptation in 2021 was just 21 billion dollars, which was actually a 15 percent decline from the year before.
286
+
287
+ Speaker 2: This means the actual needs are 10 to 18 times greater than the funds that are actually being provided, leaving the most vulnerable communities dangerously exposed and underprepared.
288
+
289
+ Speaker 3: I understand the need is great, but why is this framed as a justice issue? Isn't every country ultimately responsible for protecting its own citizens and adapting to its own challenges?
290
+
291
+ Speaker 2: That question gets to the very core of the UN climate negotiations. The entire process is built upon a foundational principle known as common but differentiated responsibilities and respective capabilities. It's a bit of a mouthful, but the concept is straightforward.
292
+
293
+ Speaker 2: It acknowledges that while all nations share a common responsibility to protect the global climate, the developed countries, which have been industrializing for over a century, bear a much greater historical responsibility for causing the problem in the first place. They also possess far greater financial and technological capabilities to address it.
294
+
295
+ Speaker 4: So it’s the idea that the polluter should pay. The ones who created the mess have a greater obligation to help clean it up, and to help protect those who are most harmed by it.
296
+
297
+ Speaker 2: Exactly. Climate justice frameworks articulate this through the concept of a double inequality. The very people and nations who have contributed the least to the emissions that cause climate change are the ones who are suffering the earliest and most severe consequences.
298
+
299
+ Speaker 2: Therefore, a just global response requires that the developed nations lead the way in making the deepest emissions cuts, and that they provide substantial financial and technological support to help developing nations adapt to the impacts they did little to cause.
300
+
301
+ Speaker 1: Carter, you were just explaining this core principle of climate justice, that the nations with the greatest historical responsibility for emissions also have the greatest capacity to help solve the problem.
302
+
303
+ Speaker 2: Yes, and it builds on what Maya was saying. It’s about recognizing the profound unfairness, the, uh, double inequality that lies at the heart of the climate crisis. The people who are most harmed are the ones who did the least to cause the problem. Think about it, uh, a farmer in the Sahel whose land is turning to desert, or a family in a low-lying island nation whose home is threatened by sea level rise… their contribution to historical emissions is practically zero.
304
+
305
+ Speaker 4: So what you're saying is, that farmer, whose crops are failing from a drought they had no part in creating, is right now paying a much, much higher price than someone in a wealthy country who has, you know, benefited from a century of industrial development powered by fossil fuels.
306
+
307
+ Speaker 2: That is the injustice in a nutshell. And so, the framework for a just response is built on that understanding. It means developed nations have a moral and ethical obligation to lead with deep, rapid emissions cuts. And, crucially, it means they have an obligation to provide significant financial and technological support to help developing nations build clean economies and adapt to the impacts they are already facing.
308
+
309
+ Speaker 3: I understand the moral argument. I do. But from a purely practical standpoint, it seems incredibly complicated. I mean, how far back do you go to assign this historical responsibility? Are you trying to calculate the emissions of the United Kingdom from the 1880s? It feels like an impossibly complex way to assign blame.
310
+
311
+ Speaker 2: That's a fair point, Frank, and you know, it’s less about calculating precise historical blame and more about acknowledging the reality of the present day. The framework is not about punishing past generations. It's about recognizing which nations today have the accumulated wealth, the technology, and the stable institutions—many of which were built on that history of fossil-fueled development—to lead the global response. It’s about capability and responsibility in the here and now.
312
+
313
+ Speaker 1: This whole conversation about justice, responsibility, and the immense shortfall in support really underscores the urgency of the crisis. And perhaps nothing in this entire report highlights that urgency more than the growing scientific understanding of a concept known as climate tipping points. Carter, for our listeners, what exactly is a tipping point?
314
+
315
+ Speaker 2: It is probably the most sobering concept in all of climate science. The IPCC defines a tipping point as a critical threshold in the Earth's system. Once that threshold is crossed, a part of the system could trigger an abrupt, cascading, and potentially irreversible change.
316
+
317
+ Speaker 1: Abrupt and irreversible. Those are two very powerful words. What does irreversible mean in this context?
318
+
319
+ Speaker 2: It means that even if we managed to cool the planet back down later, the system might not flip back. The change could be locked in for centuries, or even millennia. We could pass a point of no return.
320
+
321
+ Speaker 4: That is… a terrifying thought. So what are these systems? What parts of the planet are we talking about?
322
+
323
+ Speaker 2: Scientists have identified several large-scale components of the Earth system that may have these tipping points. The most commonly discussed are the great ice sheets. We’re talking about the irreversible collapse of the Greenland and the West Antarctic ice sheets.
324
+
325
+ Speaker 1: And what would be the consequence of something like that?
326
+
327
+ Speaker 2: Well, uh, together, those two ice sheets hold enough frozen water to raise the global mean sea level by over 10 meters. That's about 33 feet.
328
+
329
+ Speaker 4: Ten meters… I… I can’t even comprehend that. That's not just flooding. That is wiping entire cities, entire island nations, completely off the map for good.
330
+
331
+ Speaker 2: Yes, the consequences would be civilization-altering. And another major tipping element is in the oceans themselves. A major slowdown or even a shutdown of the Atlantic Meridional Overturning Circulation, often called the AMOC.
332
+
333
+ Speaker 3: The AMOC. I've heard of that, but it sounds like something out of a disaster movie. What does this current actually do for us?
334
+
335
+ Speaker 2: It's a massive system of ocean currents that acts like a conveyor belt, transporting warm water from the tropics up to the North Atlantic. It plays a huge role in regulating weather patterns, especially in the Northern Hemisphere.
336
+
337
+ Speaker 2: A collapse of this system would drastically alter weather across North America and Europe, causing, you know, extreme cooling in some places, changing rainfall patterns, and disrupting monsoons that billions of people depend on for their food.
338
+
339
+ Speaker 1: So we have the ice and the oceans. What else?
340
+
341
+ Speaker 2: Then we have the biosphere systems. There are two major ones scientists are deeply concerned about. The first is the potential dieback of the Amazon rainforest.
342
+
343
+ Speaker 1: So the Amazon could go from being this vital carbon sink that helps us, to becoming a major carbon source that actually hurts us?
344
+
345
+ Speaker 2: Precisely. Large parts of the forest could transition into a drier, savanna-like ecosystem. And in doing so, it would release the vast quantities of carbon stored in its trees and soil, which would create a powerful feedback loop that accelerates even more global warming.
346
+
347
+ Speaker 4: And the other one? You hear people talk about a ticking carbon bomb in the arctic. Is that what you mean?
348
+
349
+ Speaker 2: That's the one. The abrupt, widespread thawing of permafrost. This is the permanently frozen ground in the arctic regions, and it contains enormous amounts of organic carbon that has been locked away for thousands of years. As it thaws, microbes decompose that organic matter and release it into the atmosphere as carbon dioxide and, even more potently, methane. This is another one of those dangerous feedback loops.
350
+
351
+ Speaker 1: So Carter, we have these massive, continent-scale systems that could fundamentally break. I think for a long time, many of us thought of these tipping points as very distant risks. You know, things that might happen if warming got really, really bad, say, at five or six degrees Celsius. What does the latest science in the report say about that?
352
+
353
+ Speaker 2: This, Alice, is perhaps the single most concerning finding to emerge in the last few years of research. The scientific consensus has shifted. Those early estimates that suggested these were high-warming risks have been revised. The latest research, which is cited in the IPCC reports, indicates that the temperature thresholds for triggering some of these tipping points may be much, much lower than we previously thought.
354
+
355
+ Speaker 3: How much lower are we talking about?
356
+
357
+ Speaker 2: The latest studies indicate that several of these major tipping points, including the collapse of the Greenland and West Antarctic ice sheets, the shutdown of the AMOC, and widespread permafrost thaw, could potentially be triggered at warming levels between 1.5 and 2.0 degrees Celsius.
358
+
359
+ Speaker 4: But wait a minute. Carter, you said at the very, very beginning of our conversation that the world already temporarily breached 1.5 degrees of warming in 2024. If the trigger point is 1.5 degrees, what does that mean for us right now?
360
+
361
+ Speaker 2: It means… well, it means that the risk is no longer a distant, abstract threat for future generations. It places the possibility of crossing these irreversible thresholds squarely within the realm of possibility this century. It moves the conversation from the future into the immediate present.
362
+
363
+ Speaker 2: And, you know, it adds a profound, almost existential urgency to the need for immediate, deep, and drastic emissions reductions. The window of opportunity to steer away from these points is closing, and it is closing very, very rapidly.
364
+
365
+ Speaker 1: That is a deeply unsettling reality to confront, Carter. And Maya, I see you reacting to that. When you hear that the 1.5 degree line, which we’ve talked about for so long as this future guardrail, is not only something we've touched but is also the potential trigger for these irreversible changes… what does that feel like?
366
+
367
+ Speaker 4: You know, it… it almost takes your breath away. It feels like we've been driving towards a cliff in the fog, arguing about how fast we should be going. And Carter is saying the fog has just cleared, and we're right at the edge. We’re there. That's a very, very hard thing to fully process.
368
+
369
+ Speaker 3: It is. And it brings up a really difficult, practical question for me. If we're already on the verge of crossing these irreversible thresholds, what is the point of all this? I mean, does a 43 percent emissions cut by 2030, which already seems impossible, even matter anymore if the fuse has already been lit on something like the Greenland ice sheet? Have we… have we already lost the game?
370
+
371
+ Speaker 2: Frank, that is the most important question anyone can ask right now. And the conclusion of the report, uh, argues that this is precisely why our actions now matter more than they ever have before. The first major conclusion is that the defining characteristic of the last decade is non-linear acceleration.
372
+
373
+ Speaker 1: Okay, non-linear acceleration. Break that down for us.
374
+
375
+ Speaker 2: Think of it like a car that's rolling down a hill. But the hill isn't a steady slope; it's a curve that gets steeper and steeper as you go. So for every foot you travel, your speed increases more than it did in the previous foot. You are accelerating exponentially, not in a straight line, not arithmetically. That’s what’s happening to our planetary systems. The risks are growing at an accelerating rate.
376
+
377
+ Speaker 1: So every fraction of a degree of warming we can prevent now, every year we can act faster, has a much bigger impact in preventing that future acceleration than it would have twenty or thirty years ago.
378
+
379
+ Speaker 2: Exactly. It’s what scientists call positive feedback loops becoming more potent. So, to answer Frank’s question, it’s the absolute opposite of the game being lost. It means the stakes of our actions in the next five to ten years are higher than they have ever been in human history. Every ton of carbon we keep out of the atmosphere now pays huge dividends in slowing down that terrifying acceleration toward those tipping points.
380
+
381
+ Speaker 1: And the report also concludes that these are not isolated problems, correct? It talks about a cascade of interconnected crises.
382
+
383
+ Speaker 2: Yes, that's the second key takeaway. We can no longer think of climate impacts as a series of separate events. A drought is not just a lack of water. It is a trigger. It triggers failures in the food system when crops fail. It triggers failures in the economic system when farmers lose their livelihoods.
384
+
385
+ Speaker 2: It triggers, you know, public health crises from malnutrition and water-borne diseases. It can even culminate in social instability and displacement. Climate change is a threat multiplier that makes all our existing vulnerabilities worse.
386
+
387
+ Speaker 4: You can really see that in real life, can’t you? I mean, a wildfire isn't just a fire anymore. It becomes a public health crisis for millions of people breathing in the smoke. It's an economic crisis for the entire region. It becomes a water crisis months later when the first heavy rains wash toxic ash and debris into the reservoirs. You realize that one event pulls on all the other threads that hold our society together. Everything is connected.
388
+
389
+ Speaker 2: That’s a perfect way to put it, Maya. And because everything is connected, the report concludes that our response has to be holistic. We can’t have siloed policies that address energy, or agriculture, or public health in isolation. They are all part of the same interconnected challenge.
390
+
391
+ Speaker 1: This brings us to the third, and perhaps the toughest, conclusion from the report. Which is that our global response, as it stands today, is being dangerously outpaced by the physical reality of climate change.
392
+
393
+ Speaker 2: That's the hard truth of the last decade. Despite all the meetings and the progress on renewables, the response remains critically insufficient. The report concludes that this failure is defined by three persistent and widening gaps. First is the ambition gap we already discussed, the gap between the weak climate pledges from countries and what science clearly shows is necessary.
394
+
395
+ Speaker 1: And the second?
396
+
397
+ Speaker 2: The second is the adaptation finance gap, which we just covered. The massive shortfall in funding that leaves the world’s most vulnerable populations essentially undefended against the coming storms and droughts. And the third is the justice gap, which undermines the trust and cooperation that are absolutely essential for any kind of effective global solution.
398
+
399
+ Speaker 3: So if I'm hearing this correctly, the report’s ultimate conclusion is that our primary problem is no longer a technological one. We have the solar panels, we have the wind turbines, we have the efficiency solutions. The report is saying that the biggest barriers now are political, financial, and social. It's about a lack of political will, a failure to mobilize the necessary funds, and a failure to address the core injustices of the crisis.
400
+
401
+ Speaker 2: That is the absolute crux of the conclusion. Technology is a vital tool, an essential tool, but it is not a silver bullet. The primary obstacles are now in our halls of government, in our financial institutions, and, uh, in our collective willingness to face this reality and act at the scale it requires.
402
+
403
+ Speaker 1: So after this incredibly detailed and, frankly, alarming look back at the last decade, where does this leave us? We have a planet in a state of acceleration. We've temporarily breached the 1.5 degree threshold. And the risk of irreversible tipping points is no longer a future problem, but a present-day danger. Maya, I want to start with you. What’s your final takeaway?
404
+
405
+ Speaker 4: It leaves me feeling that the time for simply being worried, or for abstract hope, is over. The only appropriate response to this level of evidence is determined action. This report is a story written in data, and it's telling us we have to transform this stark awareness into real, tangible work in our communities and demand it from our leaders. There’s no time for anything else.
406
+
407
+ Speaker 1: Frank?
408
+
409
+ Speaker 3: It leaves me thinking that we need to have a much more honest and pragmatic conversation about the real-world costs and trade-offs. We’ve talked about technology and policy, but this report makes it clear that the real fight is over politics and economics. And until we tackle that head-on, with honesty, we'll keep falling short.
410
+
411
+ Speaker 1: And Carter, a final thought from you.
412
+
413
+ Speaker 2: The science has been clear for a long time, but the evidence from this past decade is definitive. You know, this period from 2015 to 2025 will be remembered as the decade the consequences of our inaction became undeniable. That temporary breach of 1.5 degrees served as a final, unambiguous warning. The scientific challenge now is to monitor these accelerating changes. But the human challenge is to finally close those gaps between promises and performance, before those tipping points are crossed for good.
414
+
415
+ Speaker 1: Carter, that is a powerful and frankly stark place to end, on the precipice of these tipping points with the clock running out. But... you know, before we wrap up completely, I want to hold on that last thought. The human challenge. I feel we can't end just with the warning. I want to pivot from the problems we've detailed so thoroughly to the specific pathways forward that are emerging. Beyond the high-level policy failures, where are the new fronts in this challenge?
416
+
417
+ Speaker 2: That's a crucial pivot to make, Alice. Because, uh, despair is paralyzing. And despite the failures, there are new strategies and, you know, new arenas of action that are gaining momentum.
418
+
419
+ Speaker 1: Let's talk about one of those. We've mentioned the justice gap and the economic challenges. What about the people, the workers and communities, whose entire livelihoods are tied to the fossil fuel industries we need to transition away from?
420
+
421
+ Speaker 2: You're talking about the concept of a Just Transition. And you know, this has become a central part of the conversation because it's both morally right and politically essential. A Just Transition means ensuring that the shift to a green economy is fair and inclusive. It means we don't leave coal miners, oil rig workers, and entire communities that depend on these industries behind.
voices/en-Alice_woman.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c27ae47421436287a6bd2c3062de2dc2a2855b78c0bb626d472202c359704203
3
+ size 296684
voices/en-Carter_man.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dd7b12f25bf279d878a9f7a3125f64bff2b312a189959090acff9138a55e8dd
3
+ size 1331244
voices/en-Frank_man.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa77c4794a005c4b05a52bbce5f30e77f0d28987b9a9e737401a5d30fd1ebcb5
3
+ size 1158444
voices/en-Mary_woman_bgm.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c421eeab1af5b3ddae8d14cfcf6b65e496047ad2228325d61d1b6967fca11700
3
+ size 1292878
voices/en-Maya_woman.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb1288bc02546c7f1117698fb78e994f060e623af148be8ccbf93dd0bea79e32
3
+ size 1305644
voices/in-Samuel_man.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76b07b5a12ca0b24a1e4a88100c4e2e47a2552ebb96807d52f116cf05fc46b50
3
+ size 1273644
voices/zh-Anchen_man_bgm.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f71aeb33ed66c449dedb75d8a505478d86d47ec49e0e4c33c1fd0f8324d781fb
3
+ size 1177644
voices/zh-Bowen_man.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cef6c018e73e9fb6a1269fd61ded08144ae6380cdec242eebb1cc8aca49fed1
3
+ size 1419940
voices/zh-Xinran_woman.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbcb9e28bcc544675ef75a8ba12528bf09e713eb53a8c0c819dec3daf2d486d3
3
+ size 1337644