File size: 7,394 Bytes
909e36b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""Tokenization classes for vibevoice."""

from typing import List, Optional, Union

from transformers.utils import logging
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast

logger = logging.get_logger(__name__)


class VibeVoiceTextTokenizer(Qwen2Tokenizer):
    """

    Construct a VibeVoice tokenizer. Based on the Qwen2 tokenizer with additional special tokens for speech.

    

    Args:

        vocab_file (`str`):

            Path to the vocabulary file.

        merges_file (`str`):

            Path to the merges file.

        errors (`str`, *optional*, defaults to `"replace"`):

            Paradigm to follow when decoding bytes to UTF-8.

        unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):

            The unknown token.

        bos_token (`str`, *optional*):

            The beginning of sequence token. Not used for vibevoice.

        eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):

            The end of sequence token.

        pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):

            The token used for padding.

        add_special_tokens (`bool`, *optional*, defaults to `True`):

            Whether or not to add special tokens when encoding.

    """

    model_input_names = ["input_ids", "attention_mask"]

    def __init__(

        self,

        vocab_file,

        merges_file,

        errors="replace",

        unk_token="<|endoftext|>",

        bos_token=None,

        eos_token="<|endoftext|>",

        pad_token="<|endoftext|>",

        add_prefix_space=False,

        add_special_tokens=True,

        **kwargs,

    ):
        super().__init__(
            vocab_file=vocab_file,
            merges_file=merges_file,
            errors=errors,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            add_prefix_space=add_prefix_space,
            add_special_tokens=add_special_tokens,
            **kwargs,
        )
        
        # Add VibeVoice-specific special tokens
        self._add_vibevoice_special_tokens()
        
    def _add_vibevoice_special_tokens(self):
        """Add VibeVoice-specific special tokens."""
        special_tokens = {
            "additional_special_tokens": [
                "<|vision_start|>",  # Speech start (reusing vision tokens)
                "<|vision_end|>",  # Speech end
                "<|vision_pad|>",  # Speech diffusion pad
            ]
        }
        num_added = self.add_special_tokens(special_tokens)
        
        # Cache special token IDs
        self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
        self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
        self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")
        
        self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')

        return num_added
    
    @property
    def eos_id(self) -> int:
        """Id of the end of sequence token."""
        return self._eos_id
    
    @property
    def speech_start_id(self) -> int:
        """Id of the speech start token."""
        return self._speech_start_id
    
    @property
    def speech_end_id(self) -> int:
        """Id of the speech end token."""
        return self._speech_end_id
    
    @property
    def speech_diffusion_id(self) -> int:
        """Id of the speech diffusion token."""
        return self._speech_diffusion_id
    
    @property
    def pad_id(self) -> int:
        """Id used for padding (returns -100 for loss masking)."""
        return -100


class VibeVoiceTextTokenizerFast(Qwen2TokenizerFast):
    """

    Construct a "fast" VibeVoice tokenizer (backed by HuggingFace's *tokenizers* library).

    Based on the Qwen2 tokenizer with additional special tokens for speech.

    

    Args:

        vocab_file (`str`, *optional*):

            Path to the vocabulary file.

        merges_file (`str`, *optional*):

            Path to the merges file.

        tokenizer_file (`str`, *optional*):

            Path to [tokenizers](https://github.com/huggingface/tokenizers) file.

        unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):

            The unknown token.

        bos_token (`str`, *optional*):

            The beginning of sequence token. Not used for vibevoice.

        eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):

            The end of sequence token.

        pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):

            The token used for padding.

    """

    model_input_names = ["input_ids", "attention_mask"]

    def __init__(

        self,

        vocab_file=None,

        merges_file=None,

        tokenizer_file=None,

        unk_token="<|endoftext|>",

        bos_token=None,

        eos_token="<|endoftext|>",

        pad_token="<|endoftext|>",

        add_prefix_space=False,

        **kwargs,

    ):
        super().__init__(
            vocab_file=vocab_file,
            merges_file=merges_file,
            tokenizer_file=tokenizer_file,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            add_prefix_space=add_prefix_space,
            **kwargs,
        )
        
        # Add VibeVoice-specific special tokens
        self._add_vibevoice_special_tokens()
        
    def _add_vibevoice_special_tokens(self):
        """Add VibeVoice-specific special tokens."""
        special_tokens = {
            "additional_special_tokens": [
                "<|vision_start|>",  # Speech start (reusing vision tokens)
                "<|vision_end|>",  # Speech end
                "<|vision_pad|>",  # Speech diffusion pad
            ]
        }
        num_added = self.add_special_tokens(special_tokens)
        
        # Cache special token IDs
        self._speech_start_id = self.convert_tokens_to_ids("<|vision_start|>")
        self._speech_end_id = self.convert_tokens_to_ids("<|vision_end|>")
        self._speech_diffusion_id = self.convert_tokens_to_ids("<|vision_pad|>")

        # self._eos_id = self.convert_tokens_to_ids('<|endoftext|>')
        self._eos_id = self.eos_token_id # qwen2 / qwen3
        self._pad_id = self.convert_tokens_to_ids('<|image_pad|>')
        
        return num_added
    
    @property
    def eos_id(self) -> int:
        """Id of the end of sequence token."""
        return self._eos_id
    
    @property
    def speech_start_id(self) -> int:
        """Id of the speech start token."""
        return self._speech_start_id
    
    @property
    def speech_end_id(self) -> int:
        """Id of the speech end token."""
        return self._speech_end_id
    
    @property
    def speech_diffusion_id(self) -> int:
        """Id of the speech diffusion token."""
        return self._speech_diffusion_id
    
    @property
    def pad_id(self) -> int:
        """Id used for padding (returns -100 for loss masking)."""
        return self._pad_id


__all__ = [
    "VibeVoiceTextTokenizer", 
    "VibeVoiceTextTokenizerFast", 
]