Test-Space / face_emo_analysize.py
LiuPengNGP's picture
Create face_emo_analysize.py
fa1db47 verified
raw
history blame
11.1 kB
import cv2
import mediapipe as mp
import math
import numpy as np
import time
import torch
from PIL import Image
from torchvision import transforms
# 定义预处理函数
def pth_processing(fp):
class PreprocessInput(torch.nn.Module):
def __init__(self):
super(PreprocessInput, self).__init__()
def forward(self, x):
x = x.to(torch.float32)
x = torch.flip(x, dims=(0,))
x[0, :, :] -= 91.4953
x[1, :, :] -= 103.8827
x[2, :, :] -= 131.0912
return x
def get_img_torch(img):
ttransform = transforms.Compose([
transforms.PILToTensor(),
PreprocessInput()
])
img = img.resize((224, 224), Image.Resampling.NEAREST)
img = ttransform(img)
img = torch.unsqueeze(img, 0).to('cuda')
return img
return get_img_torch(fp)
# 定义坐标归一化函数
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
return x_px, y_px
# 定义获取面部边界框的函数
def get_box(fl, w, h):
idx_to_coors = {}
for idx, landmark in enumerate(fl.landmark):
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
if landmark_px:
idx_to_coors[idx] = landmark_px
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
(startX, startY) = (max(0, x_min), max(0, y_min))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
return startX, startY, endX, endY
# 定义显示情感预测结果的函数
def display_EMO_PRED(img, box, label='', prob=0.0, color=(128, 128, 128), txt_color=(255, 255, 255), line_width=2):
lw = line_width or max(round(sum(img.shape) / 2 * 0.003), 2)
text2_color = (255, 0, 255)
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(img, p1, p2, text2_color, thickness=lw, lineType=cv2.LINE_AA)
font = cv2.FONT_HERSHEY_SIMPLEX
tf = max(lw - 1, 1)
text_fond = (0, 0, 0)
# 获取情感标签的文本尺寸
label_width, label_height = cv2.getTextSize(label, font, lw / 3, tf)[0]
# 显示情感标签
cv2.putText(img, label,
(p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA)
cv2.putText(img, label,
(p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA)
# 显示情感概率
prob_text = f"{prob:.2f}"
prob_width, prob_height = cv2.getTextSize(prob_text, font, lw / 3, tf)[0]
cv2.putText(img, prob_text,
(p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA)
cv2.putText(img, prob_text,
(p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA)
return img
# 定义显示FPS的函数
def display_FPS(img, text, margin=1.0, box_scale=1.0):
img_h, img_w, _ = img.shape
line_width = int(min(img_h, img_w) * 0.001) # line width
thickness = max(int(line_width / 3), 1) # font thickness
font_face = cv2.FONT_HERSHEY_SIMPLEX
font_color = (0, 0, 0)
font_scale = thickness / 1.5
t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
margin_n = int(t_h * margin)
sub_img = img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5,
1.0)
cv2.putText(img=img,
text=text,
org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
fontFace=font_face,
fontScale=font_scale,
color=font_color,
thickness=thickness,
lineType=cv2.LINE_AA,
bottomLeftOrigin=False)
return img
def face_emo_analysize():
# 初始化MediaPipe Face Mesh
mp_face_mesh = mp.solutions.face_mesh
# 加载PyTorch模型
name = '0_66_49_wo_gl'
pth_model = torch.jit.load('torchscript_model_0_66_49_wo_gl.pth'.format(name)).to(
'cuda')
pth_model.eval()
# 定义情感字典
DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}
# 打开摄像头
cap = cv2.VideoCapture(0)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
# 设置视频写入器
path_save_video = 'result2.mp4'
vid_writer = cv2.VideoWriter(path_save_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
# 使用MediaPipe Face Mesh进行面部检测
emotion_stats = {}
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
t1 = time.time()
success, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
# 使用PyTorch模型进行情感预测
cur_face = pth_processing(Image.fromarray(cur_face))
output = torch.nn.functional.softmax(pth_model(cur_face), dim=1).cpu().detach().numpy()[0]
# 获取情感类别和概率
cl = np.argmax(output)
label = DICT_EMO[cl]
prob = output[cl]
# 记录情感统计信息
if label not in emotion_stats:
emotion_stats[label] = {'start_time': t1, 'duration': 0, 'total_prob': prob, 'count': 1}
else:
emotion_stats[label]['duration'] += (t1 - emotion_stats[label]['start_time'])
emotion_stats[label]['total_prob'] += prob
emotion_stats[label]['count'] += 1
emotion_stats[label]['start_time'] = t1
# 显示情感结果和概率
frame = display_EMO_PRED(frame, (startX, startY, endX, endY), label, prob, line_width=3)
t2 = time.time()
# 显示FPS
frame = display_FPS(frame, 'FPS: {0:.1f}'.format(1 / (t2 - t1)), box_scale=.5)
# 写入视频
vid_writer.write(frame)
# 显示帧
cv2.imshow('Webcam', frame)
if cv2.waitKey(1) & 0xFF == ord('\x1b'):
break
# 释放资源
vid_writer.release()
cap.release()
cv2.destroyAllWindows()
# 打印情感统计信息
for emotion, stats in emotion_stats.items():
avg_prob = stats['total_prob'] / stats['count']
print(f'Emotion: {emotion}, Duration: {stats["duration"]:.2f} seconds, Average Probability: {avg_prob:.2f}')
# 将视频转换为GIF
from moviepy.editor import VideoFileClip
def convert_mp4_to_gif(input_path, output_path, fps=10):
clip = VideoFileClip(input_path)
clip.write_gif(output_path, fps=fps)
#此时我们获得了各表情的持续时间与平均概率,我们可以计算大小,如果负向情绪大于正向情绪那么情感就是负的,再计算平均值即可.
positive_emotions = ['Happiness', 'Surprise']
negative_emotions = ['Anger', 'Fear', 'Sadness', 'Disgust']
# 初始化正向和负向情感的统计信息
positive_stats = {'duration': 0, 'total_prob': 0, 'count': 0}
negative_stats = {'duration': 0, 'total_prob': 0, 'count': 0}
# 统计正向和负向情感的持续时间和概率
for emotion, stats in emotion_stats.items():
if emotion in positive_emotions:
positive_stats['duration'] += stats['duration']
positive_stats['total_prob'] += stats['total_prob']
positive_stats['count'] += stats['count']
elif emotion in negative_emotions:
negative_stats['duration'] += stats['duration']
negative_stats['total_prob'] += stats['total_prob']
negative_stats['count'] += stats['count']
# 计算正向和负向情感的平均概率
if positive_stats['count'] > 0:
positive_avg_prob = positive_stats['total_prob'] / positive_stats['count']
else:
positive_avg_prob = 0
if negative_stats['count'] > 0:
negative_avg_prob = negative_stats['total_prob'] / negative_stats['count']
else:
negative_avg_prob = 0
# 比较正向和负向情感的持续时间
if negative_stats['duration'] > positive_stats['duration']:
print(f'负向情感持续时间更长: {negative_stats["duration"]:.2f} seconds')
print(f'负向情感的平均概率: {negative_avg_prob:.2f}')
outcome = "负向,概率:"+str(negative_avg_prob)
return outcome
else:
print(f'正向情感持续时间更长: {positive_stats["duration"]:.2f} seconds')
print(f'正向情感的平均概率: {positive_avg_prob:.2f}')
outcome = "正向,概率:"+str(positive_avg_prob)
return outcome
# 将视频转换为GIF
from moviepy.editor import VideoFileClip
def convert_mp4_to_gif(input_path, output_path, fps=10):
clip = VideoFileClip(input_path)
clip.write_gif(output_path, fps=fps)
# 示例使用
input_video_path = "result.mp4"
output_gif_path = "result.gif"
convert_mp4_to_gif(input_video_path, output_gif_path)