File size: 11,089 Bytes
fa1db47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import cv2
import mediapipe as mp
import math
import numpy as np
import time
import torch
from PIL import Image
from torchvision import transforms


# 定义预处理函数
def pth_processing(fp):
    class PreprocessInput(torch.nn.Module):
        def __init__(self):
            super(PreprocessInput, self).__init__()

        def forward(self, x):
            x = x.to(torch.float32)
            x = torch.flip(x, dims=(0,))
            x[0, :, :] -= 91.4953
            x[1, :, :] -= 103.8827
            x[2, :, :] -= 131.0912
            return x

    def get_img_torch(img):
        ttransform = transforms.Compose([
            transforms.PILToTensor(),
            PreprocessInput()
        ])
        img = img.resize((224, 224), Image.Resampling.NEAREST)
        img = ttransform(img)
        img = torch.unsqueeze(img, 0).to('cuda')
        return img

    return get_img_torch(fp)


# 定义坐标归一化函数
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
    x_px = min(math.floor(normalized_x * image_width), image_width - 1)
    y_px = min(math.floor(normalized_y * image_height), image_height - 1)
    return x_px, y_px


# 定义获取面部边界框的函数
def get_box(fl, w, h):
    idx_to_coors = {}
    for idx, landmark in enumerate(fl.landmark):
        landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
        if landmark_px:
            idx_to_coors[idx] = landmark_px

    x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
    y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
    endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
    endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])

    (startX, startY) = (max(0, x_min), max(0, y_min))
    (endX, endY) = (min(w - 1, endX), min(h - 1, endY))
    return startX, startY, endX, endY


# 定义显示情感预测结果的函数
def display_EMO_PRED(img, box, label='', prob=0.0, color=(128, 128, 128), txt_color=(255, 255, 255), line_width=2):
    lw = line_width or max(round(sum(img.shape) / 2 * 0.003), 2)
    text2_color = (255, 0, 255)
    p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
    cv2.rectangle(img, p1, p2, text2_color, thickness=lw, lineType=cv2.LINE_AA)
    font = cv2.FONT_HERSHEY_SIMPLEX

    tf = max(lw - 1, 1)
    text_fond = (0, 0, 0)

    # 获取情感标签的文本尺寸
    label_width, label_height = cv2.getTextSize(label, font, lw / 3, tf)[0]

    # 显示情感标签
    cv2.putText(img, label,
                (p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
                lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA)
    cv2.putText(img, label,
                (p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
                lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA)

    # 显示情感概率
    prob_text = f"{prob:.2f}"
    prob_width, prob_height = cv2.getTextSize(prob_text, font, lw / 3, tf)[0]
    cv2.putText(img, prob_text,
                (p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
                lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA)
    cv2.putText(img, prob_text,
                (p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
                lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA)

    return img


# 定义显示FPS的函数
def display_FPS(img, text, margin=1.0, box_scale=1.0):
    img_h, img_w, _ = img.shape
    line_width = int(min(img_h, img_w) * 0.001)  # line width
    thickness = max(int(line_width / 3), 1)  # font thickness

    font_face = cv2.FONT_HERSHEY_SIMPLEX
    font_color = (0, 0, 0)
    font_scale = thickness / 1.5

    t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]

    margin_n = int(t_h * margin)
    sub_img = img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
              img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]

    white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255

    img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
    img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5,
                                                                                          1.0)

    cv2.putText(img=img,
                text=text,
                org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
                     0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
                fontFace=font_face,
                fontScale=font_scale,
                color=font_color,
                thickness=thickness,
                lineType=cv2.LINE_AA,
                bottomLeftOrigin=False)

    return img

def face_emo_analysize():
    # 初始化MediaPipe Face Mesh
    mp_face_mesh = mp.solutions.face_mesh

    # 加载PyTorch模型
    name = '0_66_49_wo_gl'
    pth_model = torch.jit.load('torchscript_model_0_66_49_wo_gl.pth'.format(name)).to(
        'cuda')
    pth_model.eval()

    # 定义情感字典
    DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}

    # 打开摄像头
    cap = cv2.VideoCapture(0)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = np.round(cap.get(cv2.CAP_PROP_FPS))

    # 设置视频写入器
    path_save_video = 'result2.mp4'
    vid_writer = cv2.VideoWriter(path_save_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))

    # 使用MediaPipe Face Mesh进行面部检测
    emotion_stats = {}
    with mp_face_mesh.FaceMesh(
            max_num_faces=1,
            refine_landmarks=False,
            min_detection_confidence=0.5,
            min_tracking_confidence=0.5) as face_mesh:
        while cap.isOpened():
            t1 = time.time()
            success, frame = cap.read()
            if frame is None: break

            frame_copy = frame.copy()
            frame_copy.flags.writeable = False
            frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
            results = face_mesh.process(frame_copy)
            frame_copy.flags.writeable = True

            if results.multi_face_landmarks:
                for fl in results.multi_face_landmarks:
                    startX, startY, endX, endY = get_box(fl, w, h)
                    cur_face = frame_copy[startY:endY, startX: endX]

                    # 使用PyTorch模型进行情感预测
                    cur_face = pth_processing(Image.fromarray(cur_face))
                    output = torch.nn.functional.softmax(pth_model(cur_face), dim=1).cpu().detach().numpy()[0]

                    # 获取情感类别和概率
                    cl = np.argmax(output)
                    label = DICT_EMO[cl]
                    prob = output[cl]

                    # 记录情感统计信息
                    if label not in emotion_stats:
                        emotion_stats[label] = {'start_time': t1, 'duration': 0, 'total_prob': prob, 'count': 1}
                    else:
                        emotion_stats[label]['duration'] += (t1 - emotion_stats[label]['start_time'])
                        emotion_stats[label]['total_prob'] += prob
                        emotion_stats[label]['count'] += 1
                        emotion_stats[label]['start_time'] = t1

                    # 显示情感结果和概率
                    frame = display_EMO_PRED(frame, (startX, startY, endX, endY), label, prob, line_width=3)

            t2 = time.time()

            # 显示FPS
            frame = display_FPS(frame, 'FPS: {0:.1f}'.format(1 / (t2 - t1)), box_scale=.5)

            # 写入视频
            vid_writer.write(frame)

            # 显示帧
            cv2.imshow('Webcam', frame)
            if cv2.waitKey(1) & 0xFF == ord('\x1b'):
                break

        # 释放资源
        vid_writer.release()
        cap.release()
        cv2.destroyAllWindows()

        # 打印情感统计信息
        for emotion, stats in emotion_stats.items():
            avg_prob = stats['total_prob'] / stats['count']
            print(f'Emotion: {emotion}, Duration: {stats["duration"]:.2f} seconds, Average Probability: {avg_prob:.2f}')

        # 将视频转换为GIF
        from moviepy.editor import VideoFileClip


        def convert_mp4_to_gif(input_path, output_path, fps=10):
            clip = VideoFileClip(input_path)
            clip.write_gif(output_path, fps=fps)
    #此时我们获得了各表情的持续时间与平均概率,我们可以计算大小,如果负向情绪大于正向情绪那么情感就是负的,再计算平均值即可.
        positive_emotions = ['Happiness', 'Surprise']
        negative_emotions = ['Anger', 'Fear', 'Sadness', 'Disgust']

        # 初始化正向和负向情感的统计信息
        positive_stats = {'duration': 0, 'total_prob': 0, 'count': 0}
        negative_stats = {'duration': 0, 'total_prob': 0, 'count': 0}

        # 统计正向和负向情感的持续时间和概率
        for emotion, stats in emotion_stats.items():
            if emotion in positive_emotions:
                positive_stats['duration'] += stats['duration']
                positive_stats['total_prob'] += stats['total_prob']
                positive_stats['count'] += stats['count']
            elif emotion in negative_emotions:
                negative_stats['duration'] += stats['duration']
                negative_stats['total_prob'] += stats['total_prob']
                negative_stats['count'] += stats['count']

        # 计算正向和负向情感的平均概率
        if positive_stats['count'] > 0:
            positive_avg_prob = positive_stats['total_prob'] / positive_stats['count']
        else:
            positive_avg_prob = 0

        if negative_stats['count'] > 0:
            negative_avg_prob = negative_stats['total_prob'] / negative_stats['count']
        else:
            negative_avg_prob = 0

        # 比较正向和负向情感的持续时间
        if negative_stats['duration'] > positive_stats['duration']:
            print(f'负向情感持续时间更长: {negative_stats["duration"]:.2f} seconds')
            print(f'负向情感的平均概率: {negative_avg_prob:.2f}')
            outcome = "负向,概率:"+str(negative_avg_prob)
            return outcome
        else:
            print(f'正向情感持续时间更长: {positive_stats["duration"]:.2f} seconds')
            print(f'正向情感的平均概率: {positive_avg_prob:.2f}')
            outcome = "正向,概率:"+str(positive_avg_prob)
            return outcome
        # 将视频转换为GIF
        from moviepy.editor import VideoFileClip


        def convert_mp4_to_gif(input_path, output_path, fps=10):
            clip = VideoFileClip(input_path)
            clip.write_gif(output_path, fps=fps)

        # 示例使用
        input_video_path = "result.mp4"
        output_gif_path = "result.gif"

        convert_mp4_to_gif(input_video_path, output_gif_path)