Spaces:
Runtime error
Runtime error
Create face_emo_analysize.py
Browse files- face_emo_analysize.py +283 -0
face_emo_analysize.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
|
11 |
+
# 定义预处理函数
|
12 |
+
def pth_processing(fp):
|
13 |
+
class PreprocessInput(torch.nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super(PreprocessInput, self).__init__()
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
x = x.to(torch.float32)
|
19 |
+
x = torch.flip(x, dims=(0,))
|
20 |
+
x[0, :, :] -= 91.4953
|
21 |
+
x[1, :, :] -= 103.8827
|
22 |
+
x[2, :, :] -= 131.0912
|
23 |
+
return x
|
24 |
+
|
25 |
+
def get_img_torch(img):
|
26 |
+
ttransform = transforms.Compose([
|
27 |
+
transforms.PILToTensor(),
|
28 |
+
PreprocessInput()
|
29 |
+
])
|
30 |
+
img = img.resize((224, 224), Image.Resampling.NEAREST)
|
31 |
+
img = ttransform(img)
|
32 |
+
img = torch.unsqueeze(img, 0).to('cuda')
|
33 |
+
return img
|
34 |
+
|
35 |
+
return get_img_torch(fp)
|
36 |
+
|
37 |
+
|
38 |
+
# 定义坐标归一化函数
|
39 |
+
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
40 |
+
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
41 |
+
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
42 |
+
return x_px, y_px
|
43 |
+
|
44 |
+
|
45 |
+
# 定义获取面部边界框的函数
|
46 |
+
def get_box(fl, w, h):
|
47 |
+
idx_to_coors = {}
|
48 |
+
for idx, landmark in enumerate(fl.landmark):
|
49 |
+
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
|
50 |
+
if landmark_px:
|
51 |
+
idx_to_coors[idx] = landmark_px
|
52 |
+
|
53 |
+
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
54 |
+
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
55 |
+
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
56 |
+
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
57 |
+
|
58 |
+
(startX, startY) = (max(0, x_min), max(0, y_min))
|
59 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
60 |
+
return startX, startY, endX, endY
|
61 |
+
|
62 |
+
|
63 |
+
# 定义显示情感预测结果的函数
|
64 |
+
def display_EMO_PRED(img, box, label='', prob=0.0, color=(128, 128, 128), txt_color=(255, 255, 255), line_width=2):
|
65 |
+
lw = line_width or max(round(sum(img.shape) / 2 * 0.003), 2)
|
66 |
+
text2_color = (255, 0, 255)
|
67 |
+
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
68 |
+
cv2.rectangle(img, p1, p2, text2_color, thickness=lw, lineType=cv2.LINE_AA)
|
69 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
70 |
+
|
71 |
+
tf = max(lw - 1, 1)
|
72 |
+
text_fond = (0, 0, 0)
|
73 |
+
|
74 |
+
# 获取情感标签的文本尺寸
|
75 |
+
label_width, label_height = cv2.getTextSize(label, font, lw / 3, tf)[0]
|
76 |
+
|
77 |
+
# 显示情感标签
|
78 |
+
cv2.putText(img, label,
|
79 |
+
(p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
|
80 |
+
lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA)
|
81 |
+
cv2.putText(img, label,
|
82 |
+
(p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
|
83 |
+
lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA)
|
84 |
+
|
85 |
+
# 显示情感概率
|
86 |
+
prob_text = f"{prob:.2f}"
|
87 |
+
prob_width, prob_height = cv2.getTextSize(prob_text, font, lw / 3, tf)[0]
|
88 |
+
cv2.putText(img, prob_text,
|
89 |
+
(p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
|
90 |
+
lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA)
|
91 |
+
cv2.putText(img, prob_text,
|
92 |
+
(p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font,
|
93 |
+
lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA)
|
94 |
+
|
95 |
+
return img
|
96 |
+
|
97 |
+
|
98 |
+
# 定义显示FPS的函数
|
99 |
+
def display_FPS(img, text, margin=1.0, box_scale=1.0):
|
100 |
+
img_h, img_w, _ = img.shape
|
101 |
+
line_width = int(min(img_h, img_w) * 0.001) # line width
|
102 |
+
thickness = max(int(line_width / 3), 1) # font thickness
|
103 |
+
|
104 |
+
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
105 |
+
font_color = (0, 0, 0)
|
106 |
+
font_scale = thickness / 1.5
|
107 |
+
|
108 |
+
t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
|
109 |
+
|
110 |
+
margin_n = int(t_h * margin)
|
111 |
+
sub_img = img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
112 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
|
113 |
+
|
114 |
+
white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
|
115 |
+
|
116 |
+
img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
117 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5,
|
118 |
+
1.0)
|
119 |
+
|
120 |
+
cv2.putText(img=img,
|
121 |
+
text=text,
|
122 |
+
org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
|
123 |
+
0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
|
124 |
+
fontFace=font_face,
|
125 |
+
fontScale=font_scale,
|
126 |
+
color=font_color,
|
127 |
+
thickness=thickness,
|
128 |
+
lineType=cv2.LINE_AA,
|
129 |
+
bottomLeftOrigin=False)
|
130 |
+
|
131 |
+
return img
|
132 |
+
|
133 |
+
def face_emo_analysize():
|
134 |
+
# 初始化MediaPipe Face Mesh
|
135 |
+
mp_face_mesh = mp.solutions.face_mesh
|
136 |
+
|
137 |
+
# 加载PyTorch模型
|
138 |
+
name = '0_66_49_wo_gl'
|
139 |
+
pth_model = torch.jit.load('torchscript_model_0_66_49_wo_gl.pth'.format(name)).to(
|
140 |
+
'cuda')
|
141 |
+
pth_model.eval()
|
142 |
+
|
143 |
+
# 定义情感字典
|
144 |
+
DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}
|
145 |
+
|
146 |
+
# 打开摄像头
|
147 |
+
cap = cv2.VideoCapture(0)
|
148 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
149 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
150 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
151 |
+
|
152 |
+
# 设置视频写入器
|
153 |
+
path_save_video = 'result2.mp4'
|
154 |
+
vid_writer = cv2.VideoWriter(path_save_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
155 |
+
|
156 |
+
# 使用MediaPipe Face Mesh进行面部检测
|
157 |
+
emotion_stats = {}
|
158 |
+
with mp_face_mesh.FaceMesh(
|
159 |
+
max_num_faces=1,
|
160 |
+
refine_landmarks=False,
|
161 |
+
min_detection_confidence=0.5,
|
162 |
+
min_tracking_confidence=0.5) as face_mesh:
|
163 |
+
while cap.isOpened():
|
164 |
+
t1 = time.time()
|
165 |
+
success, frame = cap.read()
|
166 |
+
if frame is None: break
|
167 |
+
|
168 |
+
frame_copy = frame.copy()
|
169 |
+
frame_copy.flags.writeable = False
|
170 |
+
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
171 |
+
results = face_mesh.process(frame_copy)
|
172 |
+
frame_copy.flags.writeable = True
|
173 |
+
|
174 |
+
if results.multi_face_landmarks:
|
175 |
+
for fl in results.multi_face_landmarks:
|
176 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
177 |
+
cur_face = frame_copy[startY:endY, startX: endX]
|
178 |
+
|
179 |
+
# 使用PyTorch模型进行情感预测
|
180 |
+
cur_face = pth_processing(Image.fromarray(cur_face))
|
181 |
+
output = torch.nn.functional.softmax(pth_model(cur_face), dim=1).cpu().detach().numpy()[0]
|
182 |
+
|
183 |
+
# 获取情感类别和概率
|
184 |
+
cl = np.argmax(output)
|
185 |
+
label = DICT_EMO[cl]
|
186 |
+
prob = output[cl]
|
187 |
+
|
188 |
+
# 记录情感统计信息
|
189 |
+
if label not in emotion_stats:
|
190 |
+
emotion_stats[label] = {'start_time': t1, 'duration': 0, 'total_prob': prob, 'count': 1}
|
191 |
+
else:
|
192 |
+
emotion_stats[label]['duration'] += (t1 - emotion_stats[label]['start_time'])
|
193 |
+
emotion_stats[label]['total_prob'] += prob
|
194 |
+
emotion_stats[label]['count'] += 1
|
195 |
+
emotion_stats[label]['start_time'] = t1
|
196 |
+
|
197 |
+
# 显示情感结果和概率
|
198 |
+
frame = display_EMO_PRED(frame, (startX, startY, endX, endY), label, prob, line_width=3)
|
199 |
+
|
200 |
+
t2 = time.time()
|
201 |
+
|
202 |
+
# 显示FPS
|
203 |
+
frame = display_FPS(frame, 'FPS: {0:.1f}'.format(1 / (t2 - t1)), box_scale=.5)
|
204 |
+
|
205 |
+
# 写入视频
|
206 |
+
vid_writer.write(frame)
|
207 |
+
|
208 |
+
# 显示帧
|
209 |
+
cv2.imshow('Webcam', frame)
|
210 |
+
if cv2.waitKey(1) & 0xFF == ord('\x1b'):
|
211 |
+
break
|
212 |
+
|
213 |
+
# 释放资源
|
214 |
+
vid_writer.release()
|
215 |
+
cap.release()
|
216 |
+
cv2.destroyAllWindows()
|
217 |
+
|
218 |
+
# 打印情感统计信息
|
219 |
+
for emotion, stats in emotion_stats.items():
|
220 |
+
avg_prob = stats['total_prob'] / stats['count']
|
221 |
+
print(f'Emotion: {emotion}, Duration: {stats["duration"]:.2f} seconds, Average Probability: {avg_prob:.2f}')
|
222 |
+
|
223 |
+
# 将视频转换为GIF
|
224 |
+
from moviepy.editor import VideoFileClip
|
225 |
+
|
226 |
+
|
227 |
+
def convert_mp4_to_gif(input_path, output_path, fps=10):
|
228 |
+
clip = VideoFileClip(input_path)
|
229 |
+
clip.write_gif(output_path, fps=fps)
|
230 |
+
#此时我们获得了各表情的持续时间与平均概率,我们可以计算大小,如果负向情绪大于正向情绪那么情感就是负的,再计算平均值即可.
|
231 |
+
positive_emotions = ['Happiness', 'Surprise']
|
232 |
+
negative_emotions = ['Anger', 'Fear', 'Sadness', 'Disgust']
|
233 |
+
|
234 |
+
# 初始化正向和负向情感的统计信息
|
235 |
+
positive_stats = {'duration': 0, 'total_prob': 0, 'count': 0}
|
236 |
+
negative_stats = {'duration': 0, 'total_prob': 0, 'count': 0}
|
237 |
+
|
238 |
+
# 统计正向和负向情感的持续时间和概率
|
239 |
+
for emotion, stats in emotion_stats.items():
|
240 |
+
if emotion in positive_emotions:
|
241 |
+
positive_stats['duration'] += stats['duration']
|
242 |
+
positive_stats['total_prob'] += stats['total_prob']
|
243 |
+
positive_stats['count'] += stats['count']
|
244 |
+
elif emotion in negative_emotions:
|
245 |
+
negative_stats['duration'] += stats['duration']
|
246 |
+
negative_stats['total_prob'] += stats['total_prob']
|
247 |
+
negative_stats['count'] += stats['count']
|
248 |
+
|
249 |
+
# 计算正向和负向情感的平均概率
|
250 |
+
if positive_stats['count'] > 0:
|
251 |
+
positive_avg_prob = positive_stats['total_prob'] / positive_stats['count']
|
252 |
+
else:
|
253 |
+
positive_avg_prob = 0
|
254 |
+
|
255 |
+
if negative_stats['count'] > 0:
|
256 |
+
negative_avg_prob = negative_stats['total_prob'] / negative_stats['count']
|
257 |
+
else:
|
258 |
+
negative_avg_prob = 0
|
259 |
+
|
260 |
+
# 比较正向和负向情感的持续时间
|
261 |
+
if negative_stats['duration'] > positive_stats['duration']:
|
262 |
+
print(f'负向情感持续时间更长: {negative_stats["duration"]:.2f} seconds')
|
263 |
+
print(f'负向情感的平均概率: {negative_avg_prob:.2f}')
|
264 |
+
outcome = "负向,概率:"+str(negative_avg_prob)
|
265 |
+
return outcome
|
266 |
+
else:
|
267 |
+
print(f'正向情感持续时间更长: {positive_stats["duration"]:.2f} seconds')
|
268 |
+
print(f'正向情感的平均概率: {positive_avg_prob:.2f}')
|
269 |
+
outcome = "正向,概率:"+str(positive_avg_prob)
|
270 |
+
return outcome
|
271 |
+
# 将视频转换为GIF
|
272 |
+
from moviepy.editor import VideoFileClip
|
273 |
+
|
274 |
+
|
275 |
+
def convert_mp4_to_gif(input_path, output_path, fps=10):
|
276 |
+
clip = VideoFileClip(input_path)
|
277 |
+
clip.write_gif(output_path, fps=fps)
|
278 |
+
|
279 |
+
# 示例使用
|
280 |
+
input_video_path = "result.mp4"
|
281 |
+
output_gif_path = "result.gif"
|
282 |
+
|
283 |
+
convert_mp4_to_gif(input_video_path, output_gif_path)
|