Spaces:
Sleeping
Sleeping
File size: 5,073 Bytes
b47040f 07fb84b fae072e 07fb84b fae072e b47040f ffb4b75 b47040f a8c600f b47040f 07fb84b ffb4b75 d061dc5 07fb84b b47040f 07fb84b a8c600f b47040f ffb4b75 a8c600f 81cff83 b47040f 07fb84b b47040f 3f068be b47040f ffb4b75 b47040f a8c600f ffb4b75 d061dc5 b47040f ffb4b75 b47040f 3f068be b47040f 3f068be ffb4b75 a8c600f b47040f a8c600f ffb4b75 b47040f ffb4b75 b47040f ffb4b75 b47040f ffb4b75 b47040f fae072e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import streamlit as st
import tempfile
import logging
from typing import List
import torch
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "distilgpt2"
DEFAULT_MAX_LENGTH = 1024 # Increased default max length
# Check for GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
st.sidebar.write(f"Using device: {device}")
@st.cache_resource
def load_embeddings():
"""Load and cache the embedding model."""
try:
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
st.error("Failed to load the embedding model. Please try again later.")
return None
@st.cache_resource
def load_llm(model_name, max_length):
"""Load and cache the language model."""
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_length=max_length)
return HuggingFacePipeline(pipeline=pipe)
except Exception as e:
logger.error(f"Failed to load LLM: {e}")
st.error(f"Failed to load the model {model_name}. Please try another model or check your internet connection.")
return None
def process_pdf(file) -> List[Document]:
"""Process the uploaded PDF file."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
loader = PyPDFLoader(file_path=temp_file_path)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
documents = text_splitter.split_documents(pages)
return documents
except Exception as e:
logger.error(f"Error processing PDF: {e}")
st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
return []
def create_vector_store(documents: List[Document], embeddings):
"""Create the vector store."""
try:
return FAISS.from_documents(documents, embeddings)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
st.error("Failed to create the vector store. Please try again.")
return None
def summarize_report(documents: List[Document], llm) -> str:
"""Summarize the report using the loaded model."""
try:
prompt_template = """
Summarize the following text in a clear and concise manner. Focus on the main points and key details:
{text}
Summary:
"""
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
summary = chain.run(documents)
return summary
except Exception as e:
logger.error(f"Error summarizing report: {e}")
st.error("Failed to summarize the report. Please try again.")
return ""
def main():
st.title("Report Summarizer")
model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
max_length = st.sidebar.slider("Max summary length", min_value=256, max_value=2048, value=DEFAULT_MAX_LENGTH, step=128)
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
llm = load_llm(model_option, max_length)
if not llm:
st.error(f"Failed to load the model {model_option}. Please try another model.")
return
embeddings = load_embeddings()
if not embeddings:
st.error("Failed to load embeddings. Please try again later.")
return
if uploaded_file:
with st.spinner("Processing PDF..."):
documents = process_pdf(uploaded_file)
if documents:
with st.spinner("Creating vector store..."):
db = create_vector_store(documents, embeddings)
if db and st.button("Summarize"):
with st.spinner(f"Generating summary using {model_option}..."):
summary = summarize_report(documents, llm)
if summary:
st.subheader("Summary:")
st.write(summary)
else:
st.warning("Failed to generate summary. Please try again.")
if __name__ == "__main__":
main() |