File size: 5,073 Bytes
b47040f
 
 
 
07fb84b
fae072e
07fb84b
fae072e
 
b47040f
 
 
 
ffb4b75
b47040f
 
 
 
 
 
 
a8c600f
 
b47040f
07fb84b
 
ffb4b75
d061dc5
07fb84b
b47040f
 
 
 
 
 
 
 
 
07fb84b
a8c600f
b47040f
 
ffb4b75
 
a8c600f
81cff83
b47040f
 
07fb84b
b47040f
 
 
 
 
 
 
 
3f068be
b47040f
 
ffb4b75
b47040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c600f
ffb4b75
 
 
 
d061dc5
b47040f
ffb4b75
b47040f
3f068be
 
b47040f
 
 
 
 
 
 
 
3f068be
ffb4b75
a8c600f
b47040f
 
 
a8c600f
ffb4b75
 
 
b47040f
ffb4b75
 
 
b47040f
 
 
 
 
 
 
 
 
 
 
ffb4b75
b47040f
 
 
ffb4b75
 
b47040f
 
 
 
fae072e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
import tempfile
import logging
from typing import List
import torch
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "distilgpt2"
DEFAULT_MAX_LENGTH = 1024  # Increased default max length

# Check for GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
st.sidebar.write(f"Using device: {device}")

@st.cache_resource
def load_embeddings():
    """Load and cache the embedding model."""
    try:
        return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
    except Exception as e:
        logger.error(f"Failed to load embeddings: {e}")
        st.error("Failed to load the embedding model. Please try again later.")
        return None

@st.cache_resource
def load_llm(model_name, max_length):
    """Load and cache the language model."""
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name)
        pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device, max_length=max_length)
        return HuggingFacePipeline(pipeline=pipe)
    except Exception as e:
        logger.error(f"Failed to load LLM: {e}")
        st.error(f"Failed to load the model {model_name}. Please try another model or check your internet connection.")
        return None

def process_pdf(file) -> List[Document]:
    """Process the uploaded PDF file."""
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
            temp_file.write(file.getvalue())
            temp_file_path = temp_file.name

        loader = PyPDFLoader(file_path=temp_file_path)
        pages = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
        documents = text_splitter.split_documents(pages)
        return documents
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
        return []

def create_vector_store(documents: List[Document], embeddings):
    """Create the vector store."""
    try:
        return FAISS.from_documents(documents, embeddings)
    except Exception as e:
        logger.error(f"Error creating vector store: {e}")
        st.error("Failed to create the vector store. Please try again.")
        return None

def summarize_report(documents: List[Document], llm) -> str:
    """Summarize the report using the loaded model."""
    try:
        prompt_template = """
        Summarize the following text in a clear and concise manner. Focus on the main points and key details:

        {text}

        Summary:
        """

        prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
        chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
        summary = chain.run(documents)
        return summary

    except Exception as e:
        logger.error(f"Error summarizing report: {e}")
        st.error("Failed to summarize the report. Please try again.")
        return ""

def main():
    st.title("Report Summarizer")

    model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL)
    max_length = st.sidebar.slider("Max summary length", min_value=256, max_value=2048, value=DEFAULT_MAX_LENGTH, step=128)

    uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")

    llm = load_llm(model_option, max_length)
    if not llm:
        st.error(f"Failed to load the model {model_option}. Please try another model.")
        return

    embeddings = load_embeddings()
    if not embeddings:
        st.error("Failed to load embeddings. Please try again later.")
        return

    if uploaded_file:
        with st.spinner("Processing PDF..."):
            documents = process_pdf(uploaded_file)

        if documents:
            with st.spinner("Creating vector store..."):
                db = create_vector_store(documents, embeddings)

            if db and st.button("Summarize"):
                with st.spinner(f"Generating summary using {model_option}..."):
                    summary = summarize_report(documents, llm)

                    if summary:
                        st.subheader("Summary:")
                        st.write(summary)
                    else:
                        st.warning("Failed to generate summary. Please try again.")

if __name__ == "__main__":
    main()