JohnJoelMota's picture
Update app.py
c19796e verified
raw
history blame
6.14 kB
import torch
import torchvision
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import os
import sys
# Load the pre-trained model once
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
model.eval()
# COCO class names
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
# Gradio-compatible detection function
def detect_objects(image, threshold=0.5):
if image is None:
return None
try:
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
prediction = model(image_tensor)[0]
boxes = prediction['boxes'].cpu().numpy()
labels = prediction['labels'].cpu().numpy()
scores = prediction['scores'].cpu().numpy()
image_np = np.array(image)
plt.figure(figsize=(10, 10))
plt.imshow(image_np)
ax = plt.gca()
for box, label, score in zip(boxes, labels, scores):
if score >= threshold:
x1, y1, x2, y2 = box
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
fill=False, color='red', linewidth=2))
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5),
fontsize=12, color='black')
plt.axis('off')
plt.tight_layout()
# Save the figure to return
output_path = "output.png"
plt.savefig(output_path)
plt.close()
return output_path
except Exception as e:
print(f"Error in detect_objects: {e}", file=sys.stderr)
return None
# Function to check if a file exists
def file_exists(filepath):
return os.path.isfile(filepath)
# Find base directory for examples
# For Hugging Face Spaces, this is typically the root directory of the repository
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# Check all possible locations for the example images
possible_dirs = [
BASE_DIR, # Root directory
os.path.join(BASE_DIR, "Object-Detection"), # Subdirectory
os.path.join(BASE_DIR, "images"), # Common image directory name
os.path.join(os.path.dirname(BASE_DIR), "Object-Detection") # Parent/sibling directory
]
# Test image filenames with different case combinations
test_image_variations = [
["TEST_IMG_1.jpg"],
["TEST_IMG_1.JPG"],
["test_img_1.jpg"],
["Test_Img_1.jpg"]
]
# Find working examples by testing different combinations
working_examples = []
# Check all possible combinations of directories and filenames
for directory in possible_dirs:
print(f"Checking directory: {directory}", file=sys.stderr)
if os.path.isdir(directory):
for variation in test_image_variations:
filepath = os.path.join(directory, variation[0])
if file_exists(filepath):
print(f"Found example image: {filepath}", file=sys.stderr)
working_examples.append([filepath])
# If we found the first image, try the others with the same pattern
base_pattern = variation[0].split("1")[0]
ext = variation[0].split(".")[-1]
for i in range(2, 5): # Test images 2-4
test_path = os.path.join(directory, f"{base_pattern}{i}.{ext}")
if file_exists(test_path):
print(f"Found additional example: {test_path}", file=sys.stderr)
working_examples.append([test_path])
# If we found all 4 examples, break the loop
if len(working_examples) >= 4:
break
# If we found examples in this directory, no need to check others
if working_examples:
break
# If no working examples found, try hard-coded paths
if not working_examples:
print("No examples found automatically. Using hard-coded paths.", file=sys.stderr)
example_images = [
["TEST_IMG_1.jpg"],
["TEST_IMG_2.JPG"],
["TEST_IMG_3.jpg"],
["TEST_IMG_4.jpg"]
]
else:
example_images = working_examples[:4] # Use first 4 found examples
print(f"Final example images: {example_images}", file=sys.stderr)
# Create Gradio interface
interface = gr.Interface(
fn=detect_objects,
inputs=[
gr.Image(type="pil"),
gr.Slider(0, 1, value=0.5, label="Confidence Threshold")
],
outputs=gr.Image(type="filepath"),
examples=example_images,
title="Faster R-CNN Object Detection",
description="Upload an image to detect objects using a pretrained Faster R-CNN model.",
allow_flagging="never" # Disable flagging to avoid potential issues
)
# Launch with specific configuration for Hugging Face
if __name__ == "__main__":
interface.launch(debug=True)