Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import numpy as np
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import gradio as gr
|
8 |
import os
|
|
|
9 |
|
10 |
# Load the pre-trained model once
|
11 |
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
@@ -29,48 +30,113 @@ COCO_INSTANCE_CATEGORY_NAMES = [
|
|
29 |
|
30 |
# Gradio-compatible detection function
|
31 |
def detect_objects(image, threshold=0.5):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
]
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# Create Gradio interface
|
75 |
interface = gr.Interface(
|
76 |
fn=detect_objects,
|
@@ -81,9 +147,10 @@ interface = gr.Interface(
|
|
81 |
outputs=gr.Image(type="filepath"),
|
82 |
examples=example_images,
|
83 |
title="Faster R-CNN Object Detection",
|
84 |
-
description="Upload an image to detect objects using a pretrained Faster R-CNN model."
|
85 |
-
|
|
|
86 |
|
87 |
# Launch with specific configuration for Hugging Face
|
88 |
if __name__ == "__main__":
|
89 |
-
interface.launch()
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import gradio as gr
|
8 |
import os
|
9 |
+
import sys
|
10 |
|
11 |
# Load the pre-trained model once
|
12 |
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
|
|
30 |
|
31 |
# Gradio-compatible detection function
|
32 |
def detect_objects(image, threshold=0.5):
|
33 |
+
if image is None:
|
34 |
+
return None
|
35 |
+
|
36 |
+
try:
|
37 |
+
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
38 |
+
image_tensor = transform(image).unsqueeze(0)
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
prediction = model(image_tensor)[0]
|
42 |
+
|
43 |
+
boxes = prediction['boxes'].cpu().numpy()
|
44 |
+
labels = prediction['labels'].cpu().numpy()
|
45 |
+
scores = prediction['scores'].cpu().numpy()
|
46 |
+
|
47 |
+
image_np = np.array(image)
|
48 |
+
plt.figure(figsize=(10, 10))
|
49 |
+
plt.imshow(image_np)
|
50 |
+
ax = plt.gca()
|
51 |
+
|
52 |
+
for box, label, score in zip(boxes, labels, scores):
|
53 |
+
if score >= threshold:
|
54 |
+
x1, y1, x2, y2 = box
|
55 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
56 |
+
fill=False, color='red', linewidth=2))
|
57 |
+
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
58 |
+
ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5),
|
59 |
+
fontsize=12, color='black')
|
60 |
|
61 |
+
plt.axis('off')
|
62 |
+
plt.tight_layout()
|
63 |
+
|
64 |
+
# Save the figure to return
|
65 |
+
output_path = "output.png"
|
66 |
+
plt.savefig(output_path)
|
67 |
+
plt.close()
|
68 |
+
return output_path
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Error in detect_objects: {e}", file=sys.stderr)
|
71 |
+
return None
|
72 |
|
73 |
+
# Function to check if a file exists
|
74 |
+
def file_exists(filepath):
|
75 |
+
return os.path.isfile(filepath)
|
76 |
+
|
77 |
+
# Find base directory for examples
|
78 |
+
# For Hugging Face Spaces, this is typically the root directory of the repository
|
79 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
80 |
+
|
81 |
+
# Check all possible locations for the example images
|
82 |
+
possible_dirs = [
|
83 |
+
BASE_DIR, # Root directory
|
84 |
+
os.path.join(BASE_DIR, "Object-Detection"), # Subdirectory
|
85 |
+
os.path.join(BASE_DIR, "images"), # Common image directory name
|
86 |
+
os.path.join(os.path.dirname(BASE_DIR), "Object-Detection") # Parent/sibling directory
|
87 |
+
]
|
88 |
+
|
89 |
+
# Test image filenames with different case combinations
|
90 |
+
test_image_variations = [
|
91 |
+
["TEST_IMG_1.jpg"],
|
92 |
+
["TEST_IMG_1.JPG"],
|
93 |
+
["test_img_1.jpg"],
|
94 |
+
["Test_Img_1.jpg"]
|
95 |
]
|
96 |
|
97 |
+
# Find working examples by testing different combinations
|
98 |
+
working_examples = []
|
99 |
+
|
100 |
+
# Check all possible combinations of directories and filenames
|
101 |
+
for directory in possible_dirs:
|
102 |
+
print(f"Checking directory: {directory}", file=sys.stderr)
|
103 |
+
if os.path.isdir(directory):
|
104 |
+
for variation in test_image_variations:
|
105 |
+
filepath = os.path.join(directory, variation[0])
|
106 |
+
if file_exists(filepath):
|
107 |
+
print(f"Found example image: {filepath}", file=sys.stderr)
|
108 |
+
working_examples.append([filepath])
|
109 |
+
# If we found the first image, try the others with the same pattern
|
110 |
+
base_pattern = variation[0].split("1")[0]
|
111 |
+
ext = variation[0].split(".")[-1]
|
112 |
+
for i in range(2, 5): # Test images 2-4
|
113 |
+
test_path = os.path.join(directory, f"{base_pattern}{i}.{ext}")
|
114 |
+
if file_exists(test_path):
|
115 |
+
print(f"Found additional example: {test_path}", file=sys.stderr)
|
116 |
+
working_examples.append([test_path])
|
117 |
+
|
118 |
+
# If we found all 4 examples, break the loop
|
119 |
+
if len(working_examples) >= 4:
|
120 |
+
break
|
121 |
+
|
122 |
+
# If we found examples in this directory, no need to check others
|
123 |
+
if working_examples:
|
124 |
+
break
|
125 |
+
|
126 |
+
# If no working examples found, try hard-coded paths
|
127 |
+
if not working_examples:
|
128 |
+
print("No examples found automatically. Using hard-coded paths.", file=sys.stderr)
|
129 |
+
example_images = [
|
130 |
+
["TEST_IMG_1.jpg"],
|
131 |
+
["TEST_IMG_2.JPG"],
|
132 |
+
["TEST_IMG_3.jpg"],
|
133 |
+
["TEST_IMG_4.jpg"]
|
134 |
+
]
|
135 |
+
else:
|
136 |
+
example_images = working_examples[:4] # Use first 4 found examples
|
137 |
+
|
138 |
+
print(f"Final example images: {example_images}", file=sys.stderr)
|
139 |
+
|
140 |
# Create Gradio interface
|
141 |
interface = gr.Interface(
|
142 |
fn=detect_objects,
|
|
|
147 |
outputs=gr.Image(type="filepath"),
|
148 |
examples=example_images,
|
149 |
title="Faster R-CNN Object Detection",
|
150 |
+
description="Upload an image to detect objects using a pretrained Faster R-CNN model.",
|
151 |
+
allow_flagging="never" # Disable flagging to avoid potential issues
|
152 |
+
)
|
153 |
|
154 |
# Launch with specific configuration for Hugging Face
|
155 |
if __name__ == "__main__":
|
156 |
+
interface.launch(debug=True)
|