import torch import torchvision from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights from PIL import Image import numpy as np import matplotlib.pyplot as plt import gradio as gr import os import sys # Load the pre-trained model once model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT) model.eval() # COCO class names COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # Gradio-compatible detection function def detect_objects(image, threshold=0.5): if image is None: return None try: transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms() image_tensor = transform(image).unsqueeze(0) with torch.no_grad(): prediction = model(image_tensor)[0] boxes = prediction['boxes'].cpu().numpy() labels = prediction['labels'].cpu().numpy() scores = prediction['scores'].cpu().numpy() image_np = np.array(image) plt.figure(figsize=(10, 10)) plt.imshow(image_np) ax = plt.gca() for box, label, score in zip(boxes, labels, scores): if score >= threshold: x1, y1, x2, y2 = box ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color='red', linewidth=2)) class_name = COCO_INSTANCE_CATEGORY_NAMES[label] ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5), fontsize=12, color='black') plt.axis('off') plt.tight_layout() # Save the figure to return output_path = "output.png" plt.savefig(output_path) plt.close() return output_path except Exception as e: print(f"Error in detect_objects: {e}", file=sys.stderr) return None # Function to check if a file exists def file_exists(filepath): return os.path.isfile(filepath) # Find base directory for examples # For Hugging Face Spaces, this is typically the root directory of the repository BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # Check all possible locations for the example images possible_dirs = [ BASE_DIR, # Root directory os.path.join(BASE_DIR, "Object-Detection"), # Subdirectory os.path.join(BASE_DIR, "images"), # Common image directory name os.path.join(os.path.dirname(BASE_DIR), "Object-Detection") # Parent/sibling directory ] # Test image filenames with different case combinations test_image_variations = [ ["TEST_IMG_1.jpg"], ["TEST_IMG_1.JPG"], ["test_img_1.jpg"], ["Test_Img_1.jpg"] ] # Find working examples by testing different combinations working_examples = [] # Check all possible combinations of directories and filenames for directory in possible_dirs: print(f"Checking directory: {directory}", file=sys.stderr) if os.path.isdir(directory): for variation in test_image_variations: filepath = os.path.join(directory, variation[0]) if file_exists(filepath): print(f"Found example image: {filepath}", file=sys.stderr) working_examples.append([filepath]) # If we found the first image, try the others with the same pattern base_pattern = variation[0].split("1")[0] ext = variation[0].split(".")[-1] for i in range(2, 5): # Test images 2-4 test_path = os.path.join(directory, f"{base_pattern}{i}.{ext}") if file_exists(test_path): print(f"Found additional example: {test_path}", file=sys.stderr) working_examples.append([test_path]) # If we found all 4 examples, break the loop if len(working_examples) >= 4: break # If we found examples in this directory, no need to check others if working_examples: break # If no working examples found, try hard-coded paths if not working_examples: print("No examples found automatically. Using hard-coded paths.", file=sys.stderr) example_images = [ ["TEST_IMG_1.jpg"], ["TEST_IMG_2.JPG"], ["TEST_IMG_3.jpg"], ["TEST_IMG_4.jpg"] ] else: example_images = working_examples[:4] # Use first 4 found examples print(f"Final example images: {example_images}", file=sys.stderr) # Create Gradio interface interface = gr.Interface( fn=detect_objects, inputs=[ gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Confidence Threshold") ], outputs=gr.Image(type="filepath"), examples=example_images, title="Faster R-CNN Object Detection", description="Upload an image to detect objects using a pretrained Faster R-CNN model.", allow_flagging="never" # Disable flagging to avoid potential issues ) # Launch with specific configuration for Hugging Face if __name__ == "__main__": interface.launch(debug=True)