Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
# ------------------------------ | |
# Load model | |
# ------------------------------ | |
#model_id = "gemma_3_270m_model" # your model folder or HF repo | |
model_id = "google/gemma-3-270m" # your model folder or HF repo | |
hf_token = os.environ.get("HF_TOKEN") # read from Hugging Face Secrets | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, | |
use_auth_token=hf_token, | |
trust_remote_code=True | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
use_auth_token=hf_token, | |
trust_remote_code=True, | |
device_map="auto" | |
) | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
# ------------------------------ | |
# Gradio interface | |
# ------------------------------ | |
def generate_text(prompt, max_length=100): | |
"""Generate text from the model""" | |
output = pipe(prompt, max_length=max_length) | |
return output[0]['generated_text'] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your text here..."), | |
gr.Slider(label="Max length", minimum=10, maximum=500, value=100) | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="Gemma-3-270M Text Generator", | |
description="Enter a prompt and the model will generate text." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |